rowjak's picture
End of training
b7e8ac3 verified
metadata
library_name: transformers
license: apache-2.0
base_model: anton-l/wav2vec2-base-ft-keyword-spotting
tags:
  - generated_from_trainer
datasets:
  - minds14
metrics:
  - accuracy
model-index:
  - name: wav2vec2-minds14-audio-classification-en
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: minds14
          type: minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.07964601769911504

wav2vec2-minds14-audio-classification-en

This model is a fine-tuned version of anton-l/wav2vec2-base-ft-keyword-spotting on the minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6639
  • Accuracy: 0.0796

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 3 2.6727 0.0531
No log 1.8667 7 2.6503 0.0531
2.6417 2.9333 11 2.6485 0.0796
2.6417 4.0 15 2.6514 0.0531
2.6417 4.8 18 2.6531 0.0442
2.6189 5.8667 22 2.6596 0.0619
2.6189 6.9333 26 2.6650 0.0531
2.6123 8.0 30 2.6639 0.0796

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1