metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- renovation
metrics:
- accuracy
model-index:
- name: vit-base-renovation
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: renovation
type: renovation
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6454545454545455
vit-base-renovation
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the renovation dataset. It achieves the following results on the evaluation set:
- Loss: 1.1838
- Accuracy: 0.6455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9741 | 0.2 | 25 | 0.9575 | 0.4818 |
0.9827 | 0.4 | 50 | 0.9344 | 0.5182 |
0.8578 | 0.6 | 75 | 0.8343 | 0.6182 |
0.9373 | 0.81 | 100 | 0.8896 | 0.5909 |
0.7462 | 1.01 | 125 | 0.7969 | 0.6364 |
0.6953 | 1.21 | 150 | 0.8157 | 0.6364 |
0.5461 | 1.41 | 175 | 0.7634 | 0.6773 |
0.6445 | 1.61 | 200 | 0.7743 | 0.6545 |
0.5437 | 1.81 | 225 | 0.7717 | 0.65 |
0.5911 | 2.02 | 250 | 0.8339 | 0.6364 |
0.2483 | 2.22 | 275 | 0.8596 | 0.6318 |
0.378 | 2.42 | 300 | 0.9897 | 0.6182 |
0.2742 | 2.62 | 325 | 0.8965 | 0.6909 |
0.1898 | 2.82 | 350 | 1.0262 | 0.6682 |
0.2116 | 3.02 | 375 | 1.1058 | 0.6409 |
0.0702 | 3.23 | 400 | 1.0473 | 0.6545 |
0.0566 | 3.43 | 425 | 1.0962 | 0.6682 |
0.0775 | 3.63 | 450 | 1.1502 | 0.65 |
0.0485 | 3.83 | 475 | 1.1838 | 0.6455 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3