rukundob451's picture
End of training
970ab73 verified
|
raw
history blame
2.81 kB
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-papsmear
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9044117647058824

swin-tiny-patch4-window7-224-finetuned-papsmear

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2027
  • Accuracy: 0.9044

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4844 0.9935 38 1.4298 0.4118
0.8905 1.9869 76 0.8110 0.6544
0.9097 2.9804 114 0.7109 0.7132
0.6238 4.0 153 0.9197 0.6544
0.4456 4.9935 191 0.4652 0.8015
0.4394 5.9869 229 0.5188 0.8015
0.3156 6.9804 267 0.3447 0.8529
0.2212 8.0 306 0.3509 0.8382
0.2402 8.9935 344 0.3939 0.8235
0.1733 9.9869 382 0.2444 0.8897
0.1953 10.9804 420 0.2639 0.8676
0.1363 12.0 459 0.2645 0.8824
0.1234 12.9935 497 0.2027 0.9044
0.1282 13.9869 535 0.2027 0.9044
0.1036 14.9020 570 0.2026 0.8897

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1