rukundob451's picture
End of training
970ab73 verified
|
raw
history blame
2.81 kB
---
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-papsmear
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9044117647058824
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-papsmear
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2027
- Accuracy: 0.9044
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.4844 | 0.9935 | 38 | 1.4298 | 0.4118 |
| 0.8905 | 1.9869 | 76 | 0.8110 | 0.6544 |
| 0.9097 | 2.9804 | 114 | 0.7109 | 0.7132 |
| 0.6238 | 4.0 | 153 | 0.9197 | 0.6544 |
| 0.4456 | 4.9935 | 191 | 0.4652 | 0.8015 |
| 0.4394 | 5.9869 | 229 | 0.5188 | 0.8015 |
| 0.3156 | 6.9804 | 267 | 0.3447 | 0.8529 |
| 0.2212 | 8.0 | 306 | 0.3509 | 0.8382 |
| 0.2402 | 8.9935 | 344 | 0.3939 | 0.8235 |
| 0.1733 | 9.9869 | 382 | 0.2444 | 0.8897 |
| 0.1953 | 10.9804 | 420 | 0.2639 | 0.8676 |
| 0.1363 | 12.0 | 459 | 0.2645 | 0.8824 |
| 0.1234 | 12.9935 | 497 | 0.2027 | 0.9044 |
| 0.1282 | 13.9869 | 535 | 0.2027 | 0.9044 |
| 0.1036 | 14.9020 | 570 | 0.2026 | 0.8897 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1