Ross Wightman

rwightman

AI & ML interests

Computer vision, transfer learning, semi/self supervised learning, robotics.

Recent Activity

View all activity

Articles

Organizations

rwightman's activity

Reacted to jeffboudier's post with πŸ€— 1 day ago
upvoted an article 1 day ago
view article
Article

πŸ€— Serve Anything with Inference Endpoints + Custom Handlers

By alvarobartt β€’
β€’ 2
Reacted to merve's post with πŸ”₯ 1 day ago
view post
Post
1318
What a week! A recap for everything you missed ❄️
merve/nov-22-releases-673fbbcfc1c97c4f411def07
Multimodal ✨
> Mistral AI
released Pixtral 124B, a gigantic open vision language model
> Llava-CoT (formerly known as Llava-o1) was released, a multimodal reproduction of o1 model by PKU
> OpenGVLab released MMPR: a new multimodal reasoning dataset
> Jina has released Jina-CLIP-v2 0.98B multilingual multimodal embeddings
> Apple released new SotA vision encoders AIMv2

LLMs πŸ¦™
> AllenAI dropped a huge release of models, datasets and scripts for TΓΌlu, a family of models based on Llama 3.1 aligned with SFT, DPO and a new technique they have developed called RLVR
> Jina has released embeddings-v3: new multilingual embeddings with longer context
> Hugging Face released SmolTalk: synthetic dataset used to align SmolLM2 using supervised fine-tuning
> Microsoft released orca-agentinstruct-1M-v1: a gigantic instruction dataset of 1M synthetic instruction pairs

Image Generation πŸ–ΌοΈ
> Black Forest Labs released Flux 1. tools: four new models for different image modifications and two LoRAs to do image conditioning and better steer generations

Lastly Hugging Face released a new library Observers: a lightweight SDK for monitoring interactions with AI APIs and easily store and browse them πŸ“š
$ pip install observers
Reacted to BrigitteTousi's post with πŸš€ 1 day ago
New activity in pixparse/cc12m-wds 1 day ago
posted an update 1 day ago
view post
Post
481
I'm currently on a push to expand the scope of image based datasets on the Hub. There's certainly a lot already, but for anyone who's looked closely, there's not a whole lot of standardization. I am to fix that, datasets under the https://huggingface.co/timm and https://huggingface.co/pixparse orgs will serve as canonical examples for various task / modality combinations and be useable without fuss in libraries like timm, OpenCLIP, and hopefully more.

I just uploaded the first multi-label dataset that I'll support with timm scripts soon: timm/plant-pathology-2021

Next up object detection & segmentation! I've got an annotation spec sorted out, a lot of datasets ready to rip, and yeah that means timm support for object detection, eventually segmentation, is finally under development :O
posted an update 3 days ago
view post
Post
975
Want to validate some hparams or figure out what timm model to use before commiting to download or training with a large dataset? Try mini-imagenet: timm/mini-imagenet

I had this sitting on my drive and forgot where I pulled it together from. It's 100 classes of imagenet, 50k train and 10k val images (from ImageNet-1k train set), and 5k test images (from ImageNet-1k val set). 7.4GB instead of > 100GB for the full ImageNet-1k. This ver is not reduced resolution like some other 'mini' versions. Super easy to use with timm train/val scripts, checkout the dataset card.

I often check fine-tuning with even smaller datasets like:
* timm/resisc45
* timm/oxford-iiit-pet
But those are a bit small to train any modest size model w/o starting from pretrained weights.
Reacted to dvilasuero's post with πŸš€ 4 days ago
Reacted to sayakpaul's post with πŸš€ 5 days ago
view post
Post
2173
It's been a while we shipped native quantization support in diffusers 🧨

We currently support bistandbytes as the official backend but using others like torchao is already very simple.

This post is just a reminder of what's possible:

1. Loading a model with a quantization config
2. Saving a model with quantization config
3. Loading a pre-quantized model
4. enable_model_cpu_offload()
5. Training and loading LoRAs into quantized checkpoints

Docs:
https://huggingface.co/docs/diffusers/main/en/quantization/bitsandbytes
  • 1 reply
Β·
posted an update 5 days ago
view post
Post
1545
New MobileNetV4 weights were uploaded a few days ago -- more ImageNet-12k training at 384x384 for the speedy 'Conv Medium' models.

There are 3 weight variants here for those who like to tinker. On my hold-out eval they are ordered as below, not that different, but the Adopt 180 epochs closer to AdamW 250 than to AdamW 180.
* AdamW for 250 epochs - timm/mobilenetv4_conv_medium.e250_r384_in12k
* Adopt for 180 epochs - timm/mobilenetv4_conv_medium.e180_ad_r384_in12k
* AdamW for 180 epochs - timm/mobilenetv4_conv_medium.e180_r384_in12k

This was by request as a user reported impressive results using the 'Conv Large' ImagNet-12k pretrains as object detection backbones. ImageNet-1k fine-tunes are pending, the weights do behave differently with the 180 vs 250 epochs and the Adopt vs AdamW optimizer.