senthil2002's picture
End of training
8b49e98 verified
|
raw
history blame
2.4 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert_finetune_own_data_model
    results: []

distilbert_finetune_own_data_model

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0618
  • Precision: 0.8889
  • Recall: 0.8889
  • F1: 0.8889
  • Accuracy: 0.9773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 23 0.3117 1.0 0.6667 0.8 0.9091
No log 2.0 46 0.1638 0.7778 0.7778 0.7778 0.9318
No log 3.0 69 0.1322 0.875 0.7778 0.8235 0.9545
No log 4.0 92 0.0582 0.8889 0.8889 0.8889 0.9773
No log 5.0 115 0.1196 0.8889 0.8889 0.8889 0.9773
No log 6.0 138 0.0607 0.8889 0.8889 0.8889 0.9773
No log 7.0 161 0.0918 0.8889 0.8889 0.8889 0.9773
No log 8.0 184 0.0512 0.8889 0.8889 0.8889 0.9773
No log 9.0 207 0.0521 0.8889 0.8889 0.8889 0.9773
No log 10.0 230 0.0618 0.8889 0.8889 0.8889 0.9773

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2