test_bge_10ep / README.md
seregadgl's picture
Add new SentenceTransformer model.
82b5d02 verified
metadata
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:4532
  - loss:CoSENTLoss
widget:
  - source_sentence: гантели грифы штанги гири
    sentences:
      - гири
      - коммутатор poe web настраиваемый utp3526ts-psb
      - игровой монитор lg xg2705
  - source_sentence: vt vt9602
    sentences:
      - подгрифок для скрипки 1 4 wittner ultra 918141
      - электросамокат white siberia nerpa pro 3600w 2023 elka зеленый
      - компьютер pc itmultra 2 v 2
  - source_sentence: фен dyson supersonic hd08 replika
    sentences:
      - стабилизатор smooth-x combo белый
      - dyson supersonic hd08 replika
      - ip-dal30ir0280p ver2
  - source_sentence: aresa ar-4205
    sentences:
      - холодильник olto rf-140 c  черный
      - aresa ar-3905
      - champion g200vk-1
  - source_sentence: букеты шаров сеты для детей
    sentences:
      - букеты шаров сеты для него
      - дрипка geekvape loop rda
      - труба гладкая жесткая 16 мм 3 м
model-index:
  - name: SentenceTransformer based on BAAI/bge-m3
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.9092748477762634
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8959000349666695
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.9103703525656046
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8944672696951159
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9102936678180418
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8945285994969848
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.8951660474126123
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8872903553527511
            name: Spearman Dot
          - type: pearson_max
            value: 0.9103703525656046
            name: Pearson Max
          - type: spearman_max
            value: 0.8959000349666695
            name: Spearman Max

SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("seregadgl101/test_bge_10ep")
# Run inference
sentences = [
    'букеты шаров сеты для детей',
    'букеты шаров сеты для него',
    'дрипка geekvape loop rda',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9093
spearman_cosine 0.8959
pearson_manhattan 0.9104
spearman_manhattan 0.8945
pearson_euclidean 0.9103
spearman_euclidean 0.8945
pearson_dot 0.8952
spearman_dot 0.8873
pearson_max 0.9104
spearman_max 0.8959

Training Details

Training Dataset

Unnamed Dataset

  • Size: 4,532 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 4 tokens
    • mean: 14.45 tokens
    • max: 48 tokens
    • min: 3 tokens
    • mean: 13.09 tokens
    • max: 51 tokens
    • min: 0.0
    • mean: 0.6
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    батут evo jump internal 12ft батут evo jump internal 12ft 1.0
    наручные часы orient casual наручные часы orient 1.0
    электрический духовой шкаф weissgauff eov 19 mw электрический духовой шкаф weissgauff eov 19 mx 0.4
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 504 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 4 tokens
    • mean: 14.93 tokens
    • max: 48 tokens
    • min: 4 tokens
    • mean: 13.1 tokens
    • max: 40 tokens
    • min: 0.0
    • mean: 0.59
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    потолочный светильник yeelight smart led ceiling light c2001s500 yeelight smart led ceiling light c2001s500 1.0
    канцелярские принадлежности канцелярские принадлежности разные 0.4
    usb-магнитола acv avs-1718g автомагнитола acv avs-1718g 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • save_only_model: True
  • fp16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: True
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step loss sts-dev_spearman_cosine
1.4109 50 2.1693 0.7897
2.8219 100 2.3041 0.8553
4.2328 150 2.4628 0.8737
5.6437 200 2.5485 0.8877
7.0547 250 2.4879 0.8945
8.4656 300 2.5508 0.8955
9.8765 350 2.5626 0.8959

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}