Edit model card

VANBase-finetuned-brs-finetuned-brs

This model is a fine-tuned version of Visual-Attention-Network/van-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7056
  • Accuracy: 0.5882
  • F1: 0.6957
  • Precision (ppv): 0.6154
  • Recall (sensitivity): 0.8
  • Specificity: 0.2857
  • Npv: 0.5
  • Auc: 0.5429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision (ppv) Recall (sensitivity) Specificity Npv Auc
0.6589 6.25 100 0.6655 0.5882 0.6316 0.6667 0.6 0.5714 0.5 0.5857
0.6262 12.49 200 0.6917 0.5294 0.6364 0.5833 0.7 0.2857 0.4 0.4929
0.4706 18.74 300 0.6776 0.5882 0.6957 0.6154 0.8 0.2857 0.5 0.5429
0.5202 24.98 400 0.7018 0.5294 0.6 0.6 0.6 0.4286 0.4286 0.5143
0.4628 31.25 500 0.6903 0.6471 0.75 0.6429 0.9 0.2857 0.6667 0.5929
0.3525 37.49 600 0.7241 0.5294 0.6667 0.5714 0.8 0.1429 0.3333 0.4714
0.2877 43.74 700 0.8262 0.5882 0.7407 0.5882 1.0 0.0 nan 0.5
0.2921 49.98 800 0.8058 0.4706 0.64 0.5333 0.8 0.0 0.0 0.4
0.3834 56.25 900 0.7864 0.5882 0.7407 0.5882 1.0 0.0 nan 0.5
0.2267 62.49 1000 0.5520 0.7647 0.8182 0.75 0.9 0.5714 0.8 0.7357
0.3798 68.74 1100 0.8722 0.4706 0.64 0.5333 0.8 0.0 0.0 0.4
0.2633 74.98 1200 0.7260 0.6471 0.7273 0.6667 0.8 0.4286 0.6 0.6143
0.3439 81.25 1300 1.0187 0.4118 0.5455 0.5 0.6 0.1429 0.2 0.3714
0.2532 87.49 1400 0.8812 0.5882 0.7407 0.5882 1.0 0.0 nan 0.5
0.0841 93.74 1500 0.8717 0.5294 0.6923 0.5625 0.9 0.0 0.0 0.45
0.3409 99.98 1600 0.7056 0.5882 0.6957 0.6154 0.8 0.2857 0.5 0.5429

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results