sergiocannata's picture
update model card README.md
7145312
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
model-index:
  - name: VANBase-finetuned-brs-finetuned-brs
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5882352941176471
          - name: F1
            type: f1
            value: 0.6956521739130435

VANBase-finetuned-brs-finetuned-brs

This model is a fine-tuned version of Visual-Attention-Network/van-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7056
  • Accuracy: 0.5882
  • F1: 0.6957
  • Precision (ppv): 0.6154
  • Recall (sensitivity): 0.8
  • Specificity: 0.2857
  • Npv: 0.5
  • Auc: 0.5429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision (ppv) Recall (sensitivity) Specificity Npv Auc
0.6589 6.25 100 0.6655 0.5882 0.6316 0.6667 0.6 0.5714 0.5 0.5857
0.6262 12.49 200 0.6917 0.5294 0.6364 0.5833 0.7 0.2857 0.4 0.4929
0.4706 18.74 300 0.6776 0.5882 0.6957 0.6154 0.8 0.2857 0.5 0.5429
0.5202 24.98 400 0.7018 0.5294 0.6 0.6 0.6 0.4286 0.4286 0.5143
0.4628 31.25 500 0.6903 0.6471 0.75 0.6429 0.9 0.2857 0.6667 0.5929
0.3525 37.49 600 0.7241 0.5294 0.6667 0.5714 0.8 0.1429 0.3333 0.4714
0.2877 43.74 700 0.8262 0.5882 0.7407 0.5882 1.0 0.0 nan 0.5
0.2921 49.98 800 0.8058 0.4706 0.64 0.5333 0.8 0.0 0.0 0.4
0.3834 56.25 900 0.7864 0.5882 0.7407 0.5882 1.0 0.0 nan 0.5
0.2267 62.49 1000 0.5520 0.7647 0.8182 0.75 0.9 0.5714 0.8 0.7357
0.3798 68.74 1100 0.8722 0.4706 0.64 0.5333 0.8 0.0 0.0 0.4
0.2633 74.98 1200 0.7260 0.6471 0.7273 0.6667 0.8 0.4286 0.6 0.6143
0.3439 81.25 1300 1.0187 0.4118 0.5455 0.5 0.6 0.1429 0.2 0.3714
0.2532 87.49 1400 0.8812 0.5882 0.7407 0.5882 1.0 0.0 nan 0.5
0.0841 93.74 1500 0.8717 0.5294 0.6923 0.5625 0.9 0.0 0.0 0.45
0.3409 99.98 1600 0.7056 0.5882 0.6957 0.6154 0.8 0.2857 0.5 0.5429

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1