sergiomvazq's picture
End of training
8f5ca51 verified
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: DeBERTaV3_model_V3_multilabel
    results: []

DeBERTaV3_model_V3_multilabel

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0117
  • Accuracy: 0.9978
  • F1: 0.9985
  • Precision: 0.9970
  • Recall: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 90 0.0239 0.9978 0.9985 0.9970 1.0
No log 2.0 180 0.0147 0.9978 0.9985 0.9970 1.0
No log 3.0 270 0.0131 0.9978 0.9985 0.9970 1.0
No log 4.0 360 0.0124 0.9978 0.9985 0.9970 1.0
No log 5.0 450 0.0121 0.9978 0.9985 0.9970 1.0
0.0608 6.0 540 0.0119 0.9978 0.9985 0.9970 1.0
0.0608 7.0 630 0.0117 0.9978 0.9985 0.9970 1.0
0.0608 8.0 720 0.0120 0.9978 0.9985 0.9970 1.0
0.0608 9.0 810 0.0127 0.9978 0.9985 0.9970 1.0
0.0608 10.0 900 0.0132 0.9978 0.9985 0.9970 1.0
0.0608 11.0 990 0.0139 0.9970 0.998 0.9970 0.9990
0.0121 12.0 1080 0.0143 0.9970 0.998 0.9970 0.9990
0.0121 13.0 1170 0.0143 0.9970 0.998 0.9970 0.9990

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1