sergiomvazq's picture
End of training
8f5ca51 verified
---
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: DeBERTaV3_model_V3_multilabel
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTaV3_model_V3_multilabel
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0117
- Accuracy: 0.9978
- F1: 0.9985
- Precision: 0.9970
- Recall: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 13
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 90 | 0.0239 | 0.9978 | 0.9985 | 0.9970 | 1.0 |
| No log | 2.0 | 180 | 0.0147 | 0.9978 | 0.9985 | 0.9970 | 1.0 |
| No log | 3.0 | 270 | 0.0131 | 0.9978 | 0.9985 | 0.9970 | 1.0 |
| No log | 4.0 | 360 | 0.0124 | 0.9978 | 0.9985 | 0.9970 | 1.0 |
| No log | 5.0 | 450 | 0.0121 | 0.9978 | 0.9985 | 0.9970 | 1.0 |
| 0.0608 | 6.0 | 540 | 0.0119 | 0.9978 | 0.9985 | 0.9970 | 1.0 |
| 0.0608 | 7.0 | 630 | 0.0117 | 0.9978 | 0.9985 | 0.9970 | 1.0 |
| 0.0608 | 8.0 | 720 | 0.0120 | 0.9978 | 0.9985 | 0.9970 | 1.0 |
| 0.0608 | 9.0 | 810 | 0.0127 | 0.9978 | 0.9985 | 0.9970 | 1.0 |
| 0.0608 | 10.0 | 900 | 0.0132 | 0.9978 | 0.9985 | 0.9970 | 1.0 |
| 0.0608 | 11.0 | 990 | 0.0139 | 0.9970 | 0.998 | 0.9970 | 0.9990 |
| 0.0121 | 12.0 | 1080 | 0.0143 | 0.9970 | 0.998 | 0.9970 | 0.9990 |
| 0.0121 | 13.0 | 1170 | 0.0143 | 0.9970 | 0.998 | 0.9970 | 0.9990 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1