metadata
tags:
- fuzzy-matching
- fuzzy-search
- entity-resolution
- record-linking
- structured-data-search
A Siamese BERT architecture trained at character levels tokens for embedding based Fuzzy matching.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer, util
word1 = "fuzzformer"
word1 = " ".join([char for char in word1]) ## divide the word to char level to fuzzy match
word2 = "fizzformer"
word2 = " ".join([char for char in word2]) ## divide the word to char level to fuzzy match
words = [word1, word2]
model = SentenceTransformer('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher')
fuzzy_embeddings = model.encode(words)
print("Fuzzy Match score:")
print(util.cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1]))
Usage (HuggingFace Transformers)
import torch
from transformers import AutoTokenizer, AutoModel
from torch import Tensor, device
def cos_sim(a: Tensor, b: Tensor):
"""
borrowed from sentence transformers repo
Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j.
:return: Matrix with res[i][j] = cos_sim(a[i], b[j])
"""
if not isinstance(a, torch.Tensor):
a = torch.tensor(a)
if not isinstance(b, torch.Tensor):
b = torch.tensor(b)
if len(a.shape) == 1:
a = a.unsqueeze(0)
if len(b.shape) == 1:
b = b.unsqueeze(0)
a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
return torch.mm(a_norm, b_norm.transpose(0, 1))
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Words we want fuzzy embeddings for
word1 = "fuzzformer"
word1 = " ".join([char for char in word1]) ## divide the word to char level to fuzzy match
word2 = "fizzformer"
word2 = " ".join([char for char in word2]) ## divide the word to char level to fuzzy match
words = [word1, word2]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher')
model = AutoModel.from_pretrained('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher')
# Tokenize sentences
encoded_input = tokenizer(words, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
fuzzy_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Fuzzy Match score:")
print(cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1]))
ACKNOWLEDGEMENT
A big thank you to Sentence Transformers as their implementation really expedited the implementation of Fuzzformer.
Citation
To cite FuzzTransformer in your work, please use the following bibtex reference:
@misc{shahrukhkhan2021fuzzTransformer,
author = {Shahrukh Khan},
title = {FuzzTransformer: A character level embedding based Siamese transformer for fuzzy string matching.},
year = 2021,
publisher = {Coming soon},
doi = {Coming soon},
url = {Coming soon}
}