|
--- |
|
tags: |
|
- fuzzy-matching |
|
- fuzzy-search |
|
- entity-resolution |
|
- record-linking |
|
- structured-data-search |
|
--- |
|
A Siamese BERT architecture trained at character levels tokens for embedding based Fuzzy matching. |
|
|
|
|
|
## Usage (Sentence-Transformers) |
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
Then you can use the model like this: |
|
```python |
|
from sentence_transformers import SentenceTransformer, util |
|
word1 = "fuzzformer" |
|
word1 = " ".join([char for char in word1]) ## divide the word to char level to fuzzy match |
|
word2 = "fizzformer" |
|
word2 = " ".join([char for char in word2]) ## divide the word to char level to fuzzy match |
|
words = [word1, word2] |
|
|
|
model = SentenceTransformer('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher') |
|
fuzzy_embeddings = model.encode(words) |
|
|
|
print("Fuzzy Match score:") |
|
print(util.cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1])) |
|
``` |
|
## Usage (HuggingFace Transformers) |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
from torch import Tensor, device |
|
|
|
def cos_sim(a: Tensor, b: Tensor): |
|
""" |
|
borrowed from sentence transformers repo |
|
Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j. |
|
:return: Matrix with res[i][j] = cos_sim(a[i], b[j]) |
|
""" |
|
if not isinstance(a, torch.Tensor): |
|
a = torch.tensor(a) |
|
|
|
if not isinstance(b, torch.Tensor): |
|
b = torch.tensor(b) |
|
|
|
if len(a.shape) == 1: |
|
a = a.unsqueeze(0) |
|
|
|
if len(b.shape) == 1: |
|
b = b.unsqueeze(0) |
|
|
|
a_norm = torch.nn.functional.normalize(a, p=2, dim=1) |
|
b_norm = torch.nn.functional.normalize(b, p=2, dim=1) |
|
return torch.mm(a_norm, b_norm.transpose(0, 1)) |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Words we want fuzzy embeddings for |
|
word1 = "fuzzformer" |
|
word1 = " ".join([char for char in word1]) ## divide the word to char level to fuzzy match |
|
word2 = "fizzformer" |
|
word2 = " ".join([char for char in word2]) ## divide the word to char level to fuzzy match |
|
words = [word1, word2] |
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher') |
|
model = AutoModel.from_pretrained('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(words, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, max pooling. |
|
fuzzy_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Fuzzy Match score:") |
|
print(cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1])) |
|
``` |
|
|
|
## ACKNOWLEDGEMENT |
|
A big thank you to [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) as their implementation really expedited the implementation of Fuzzformer. |
|
## Citation |
|
To cite FuzzTransformer in your work, please use the following bibtex reference: |
|
@misc{shahrukhkhan2021fuzzTransformer, <br> |
|
author = {Shahrukh Khan},<br> |
|
title = {FuzzTransformer: A character level embedding based Siamese transformer for fuzzy string matching.},<br> |
|
year = 2021,<br> |
|
publisher = {Coming soon},<br> |
|
doi = {Coming soon},<br> |
|
url = {Coming soon}<br> |
|
} |
|
|