pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- text2vec
- feature-extraction
- sentence-similarity
- transformers
datasets:
- shibing624/nli_zh
language:
- zh
metrics:
- bleu
library_name: transformers
shibing624/text2vec-base-chinese-sentence
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese-sentence.
It maps sentences to a 768 dimensional dense vector space and can be used for tasks like sentence embeddings, text matching or semantic search.
- using all 5 tasks' datasets, dataset: https://huggingface.co/datasets/shibing624/nli_zh
- base model: nghuyong/ernie-3.0-base-zh
- max_seq_length = 256
- best epoch: 3
Evaluation
For an automated evaluation of this model, see the Evaluation Benchmark: text2vec
- 本项目release模型的中文匹配评测结果:
Arch | BaseModel | Model | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | QPS |
---|---|---|---|---|---|---|---|---|---|
Word2Vec | word2vec | w2v-light-tencent-chinese | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 33.86 | 23769 |
SBERT | xlm-roberta-base | sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 3138 |
CoSENT | hfl/chinese-macbert-base | shibing624/text2vec-base-chinese | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | 48.25 | 3008 |
CoSENT | hfl/chinese-lert-large | GanymedeNil/text2vec-large-chinese | 32.61 | 44.59 | 69.30 | 14.51 | 79.44 | 48.08 | 2092 |
CoSENT | nghuyong/ernie-3.0-base-zh | shibing624/text2vec-base-chinese-sentence | 51.26 | 68.72 | 79.13 | 34.28 | 80.70 | 62.81 | 3066 |
Usage (text2vec)
Using this model becomes easy when you have text2vec installed:
pip install -U text2vec
Then you can use the model like this:
from text2vec import SentenceModel
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
model = SentenceModel('shibing624/text2vec-base-chinese-sentence')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without text2vec, you can use the model like this:
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
Install transformers:
pip install transformers
Then load model and predict:
from transformers import BertTokenizer, BertModel
import torch
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Load model from HuggingFace Hub
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese-sentence')
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese-sentence')
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Usage (sentence-transformers)
sentence-transformers is a popular library to compute dense vector representations for sentences.
Install sentence-transformers:
pip install -U sentence-transformers
Then load model and predict:
from sentence_transformers import SentenceTransformer
m = SentenceTransformer("shibing624/text2vec-base-chinese-sentence")
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
sentence_embeddings = m.encode(sentences)
print("Sentence embeddings:")
print(sentence_embeddings)
Full Model Architecture
CoSENT(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True})
)
Citing & Authors
This model was trained by text2vec.
If you find this model helpful, feel free to cite:
@software{text2vec,
author = {Ming Xu},
title = {text2vec: A Tool for Text to Vector},
year = {2023},
url = {https://github.com/shibing624/text2vec},
}