|
--- |
|
pipeline_tag: sentence-similarity |
|
license: apache-2.0 |
|
tags: |
|
- text2vec |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
datasets: |
|
- shibing624/nli_zh |
|
language: |
|
- zh |
|
metrics: |
|
- bleu |
|
library_name: transformers |
|
--- |
|
# shibing624/text2vec-base-chinese-sentence |
|
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese-sentence. |
|
|
|
It maps sentences to a 768 dimensional dense vector space and can be used for tasks |
|
like sentence embeddings, text matching or semantic search. |
|
|
|
- using all 5 tasks' datasets, dataset: https://huggingface.co/datasets/shibing624/nli_zh |
|
- base model: nghuyong/ernie-3.0-base-zh |
|
- max_seq_length = 256 |
|
- best epoch: 3 |
|
|
|
## Evaluation |
|
For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec) |
|
|
|
- 本项目release模型的中文匹配评测结果: |
|
|
|
| Arch | BaseModel | Model | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | QPS | |
|
| :-- |:-----------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----:|:-----:|:-----:|:-----:|:-----:|:---------:|:-----:| |
|
| Word2Vec | word2vec | [w2v-light-tencent-chinese](https://ai.tencent.com/ailab/nlp/en/download.html) | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 33.86 | 23769 | |
|
| SBERT | xlm-roberta-base | [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 3138 | |
|
| CoSENT | hfl/chinese-macbert-base | [shibing624/text2vec-base-chinese](https://huggingface.co/shibing624/text2vec-base-chinese) | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | 48.25 | 3008 | |
|
| CoSENT | hfl/chinese-lert-large | [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 32.61 | 44.59 | 69.30 | 14.51 | 79.44 | 48.08 | 2092 | |
|
| CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-sentence](https://huggingface.co/shibing624/text2vec-base-chinese-sentence) | 51.26 | 68.72 | 79.13 | 34.28 | 80.70 | **62.81** | 3066 | |
|
|
|
|
|
## Usage (text2vec) |
|
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed: |
|
|
|
``` |
|
pip install -U text2vec |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from text2vec import SentenceModel |
|
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] |
|
|
|
model = SentenceModel('shibing624/text2vec-base-chinese-sentence') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this: |
|
|
|
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
Install transformers: |
|
``` |
|
pip install transformers |
|
``` |
|
|
|
Then load model and predict: |
|
```python |
|
from transformers import BertTokenizer, BertModel |
|
import torch |
|
|
|
# Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] # First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese-sentence') |
|
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese-sentence') |
|
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] |
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Usage (sentence-transformers) |
|
[sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences. |
|
|
|
Install sentence-transformers: |
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then load model and predict: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
m = SentenceTransformer("shibing624/text2vec-base-chinese-sentence") |
|
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] |
|
|
|
sentence_embeddings = m.encode(sentences) |
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
CoSENT( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True}) |
|
) |
|
``` |
|
## Citing & Authors |
|
This model was trained by [text2vec](https://github.com/shibing624/text2vec). |
|
|
|
If you find this model helpful, feel free to cite: |
|
```bibtex |
|
@software{text2vec, |
|
author = {Ming Xu}, |
|
title = {text2vec: A Tool for Text to Vector}, |
|
year = {2023}, |
|
url = {https://github.com/shibing624/text2vec}, |
|
} |
|
``` |