leonardlin's picture
Update README.md
c601b4e verified
|
raw
history blame
5.33 kB
---
license: apache-2.0
language:
- ja
- en
datasets:
- augmxnt/ultra-orca-boros-en-ja-v1
base_model: tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1
tags:
- generated_from_trainer
---
shisa-v2 Base Model ablation
Using a [fork](https://github.com/shisa-ai/shaberi) of [Lightblue's Shaberi benchmark framework](https://github.com/lightblue-tech/japanese_llm_eval):
| Model | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench |
|----------------------------------------|---------|-----------------|----------|--------|-------------|
| gpt-4-turbo-2024-04-09 | 8.75 | 8.78 | 8.74 | 9.18 | 8.31 |
| CohereForAI/c4ai-command-r-plus | 7.69 | 7.50 | 7.43 | 9.05 | 6.79 |
| karakuri-ai/karakuri-lm-70b-chat-v0.1 | 6.84 | 6.86 | 6.43 | 7.85 | 6.23 |
| lightblue/ao-karasu-72B | 6.81 | 7.19 | 6.54 | 7.25 | 6.27 |
| shisa-ai/shisa-llama3-8b-v1^ | 6.29 | 6.62 | 6.41 | 7.05 | 5.07 |
| **shisa-ai/shisa-swallowmx-13a47b-v1^**| **6.17**| **6.48** | **6.07** | **7.11**| **5.03** |
| Rakuten/RakutenAI-7B-chat | 5.58 | 5.92 | 4.60 | 6.58 | 5.24 |
| shisa-ai/shisa-gemma-7b-v1 | 5.64 | 6.50 | 5.42 | 5.10 | 5.55 |
| augmxnt/shisa-gamma-7b-v1 | 5.56 | 5.84 | 4.00 | 6.73 | 5.68 |
| lightblue/qarasu-14B-chat-plus-unleashed | 5.20 | 5.58 | 4.74 | 5.46 | 5.01 |
| cyberagent/calm2-7b-chat | 4.76 | 4.90 | 3.58 | 5.75 | 4.81 |
| mistralai/Mistral-7B-Instruct-v0.2 | 4.69 | 5.78 | 4.65 | 3.80 | 4.53 |
| shisa-ai/shisa-yi1.5-9b-v1 | 4.63 | 5.98 | 4.28 | 3.26 | 5.00 |
^ Sampler settings: temperature 0.2, min_p 0.1, frequency_penalty 0.5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: inst
datasets:
- path: augmxnt/ultra-orca-boros-en-ja-v1
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/basemodel-swallowmx-8x22b
model_config:
output_router_logits: true
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-swallowmx-13a47b-v1
global_batch_size: 1
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
# https://github.com/huggingface/transformers/issues/22101
# https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py#L141
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# outputs/basemodel-swallowmx-8x22b
This model is a fine-tuned version of [tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4443
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 119
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5705 | 0.0022 | 1 | 0.5065 |
| 0.505 | 0.4993 | 229 | 0.3910 |
| 0.5258 | 0.9986 | 458 | 0.3654 |
| 0.2964 | 1.4835 | 687 | 0.3786 |
| 0.2923 | 1.9828 | 916 | 0.3669 |
| 0.1462 | 2.4682 | 1145 | 0.4429 |
| 0.1156 | 2.9676 | 1374 | 0.4443 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1