smutuvi's picture
End of training
bc87d1a verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-sw
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: sw
          split: test
          args: sw
        metrics:
          - name: Wer
            type: wer
            value: 0.3230712635221355

wav2vec2-large-xlsr-sw

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4334
  • Wer: 0.3231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.3405 0.88 400 2.8882 1.0000
1.083 1.77 800 0.5223 0.5849
0.4721 2.65 1200 0.3921 0.4667
0.3793 3.54 1600 0.3725 0.4257
0.3264 4.42 2000 0.3646 0.4179
0.294 5.31 2400 0.3542 0.4104
0.2623 6.19 2800 0.3576 0.3892
0.2408 7.08 3200 0.3516 0.3876
0.2229 7.96 3600 0.3580 0.3877
0.206 8.85 4000 0.3466 0.3683
0.1991 9.73 4400 0.3306 0.3783
0.1863 10.62 4800 0.3605 0.3707
0.1743 11.5 5200 0.3483 0.3703
0.1678 12.39 5600 0.3645 0.3618
0.1547 13.27 6000 0.3671 0.3589
0.152 14.16 6400 0.3733 0.3568
0.144 15.04 6800 0.3684 0.3486
0.136 15.93 7200 0.3558 0.3493
0.1262 16.81 7600 0.3748 0.3486
0.1222 17.7 8000 0.3774 0.3466
0.1164 18.58 8400 0.3840 0.3427
0.1108 19.47 8800 0.3988 0.3438
0.1072 20.35 9200 0.4020 0.3384
0.1008 21.24 9600 0.4013 0.3375
0.0982 22.12 10000 0.4162 0.3361
0.0951 23.01 10400 0.4107 0.3346
0.0923 23.89 10800 0.4248 0.3337
0.0866 24.78 11200 0.4151 0.3295
0.0875 25.66 11600 0.4211 0.3310
0.0813 26.55 12000 0.4303 0.3290
0.0775 27.43 12400 0.4334 0.3249
0.0759 28.32 12800 0.4312 0.3240
0.0758 29.2 13200 0.4334 0.3231

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0