|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_11_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-xlsr-sw |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_11_0 |
|
type: common_voice_11_0 |
|
config: sw |
|
split: test |
|
args: sw |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.3230712635221355 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xlsr-sw |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_11_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4334 |
|
- Wer: 0.3231 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 5.3405 | 0.88 | 400 | 2.8882 | 1.0000 | |
|
| 1.083 | 1.77 | 800 | 0.5223 | 0.5849 | |
|
| 0.4721 | 2.65 | 1200 | 0.3921 | 0.4667 | |
|
| 0.3793 | 3.54 | 1600 | 0.3725 | 0.4257 | |
|
| 0.3264 | 4.42 | 2000 | 0.3646 | 0.4179 | |
|
| 0.294 | 5.31 | 2400 | 0.3542 | 0.4104 | |
|
| 0.2623 | 6.19 | 2800 | 0.3576 | 0.3892 | |
|
| 0.2408 | 7.08 | 3200 | 0.3516 | 0.3876 | |
|
| 0.2229 | 7.96 | 3600 | 0.3580 | 0.3877 | |
|
| 0.206 | 8.85 | 4000 | 0.3466 | 0.3683 | |
|
| 0.1991 | 9.73 | 4400 | 0.3306 | 0.3783 | |
|
| 0.1863 | 10.62 | 4800 | 0.3605 | 0.3707 | |
|
| 0.1743 | 11.5 | 5200 | 0.3483 | 0.3703 | |
|
| 0.1678 | 12.39 | 5600 | 0.3645 | 0.3618 | |
|
| 0.1547 | 13.27 | 6000 | 0.3671 | 0.3589 | |
|
| 0.152 | 14.16 | 6400 | 0.3733 | 0.3568 | |
|
| 0.144 | 15.04 | 6800 | 0.3684 | 0.3486 | |
|
| 0.136 | 15.93 | 7200 | 0.3558 | 0.3493 | |
|
| 0.1262 | 16.81 | 7600 | 0.3748 | 0.3486 | |
|
| 0.1222 | 17.7 | 8000 | 0.3774 | 0.3466 | |
|
| 0.1164 | 18.58 | 8400 | 0.3840 | 0.3427 | |
|
| 0.1108 | 19.47 | 8800 | 0.3988 | 0.3438 | |
|
| 0.1072 | 20.35 | 9200 | 0.4020 | 0.3384 | |
|
| 0.1008 | 21.24 | 9600 | 0.4013 | 0.3375 | |
|
| 0.0982 | 22.12 | 10000 | 0.4162 | 0.3361 | |
|
| 0.0951 | 23.01 | 10400 | 0.4107 | 0.3346 | |
|
| 0.0923 | 23.89 | 10800 | 0.4248 | 0.3337 | |
|
| 0.0866 | 24.78 | 11200 | 0.4151 | 0.3295 | |
|
| 0.0875 | 25.66 | 11600 | 0.4211 | 0.3310 | |
|
| 0.0813 | 26.55 | 12000 | 0.4303 | 0.3290 | |
|
| 0.0775 | 27.43 | 12400 | 0.4334 | 0.3249 | |
|
| 0.0759 | 28.32 | 12800 | 0.4312 | 0.3240 | |
|
| 0.0758 | 29.2 | 13200 | 0.4334 | 0.3231 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|