|
--- |
|
base_model: microsoft/Phi-3.5-mini-instruct |
|
library_name: peft |
|
license: mit |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: Phi-3.5-MultiCap-tool-embedding-step1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Phi-3.5-MultiCap-tool-embedding-step1 |
|
|
|
This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5820 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.7683 | 0.2256 | 50 | 0.7572 | |
|
| 0.5568 | 0.4512 | 100 | 0.5648 | |
|
| 0.5259 | 0.6768 | 150 | 0.5344 | |
|
| 0.5689 | 0.9024 | 200 | 0.5199 | |
|
| 0.4983 | 1.1280 | 250 | 0.5107 | |
|
| 0.4835 | 1.3536 | 300 | 0.5050 | |
|
| 0.4492 | 1.5792 | 350 | 0.5019 | |
|
| 0.4918 | 1.8049 | 400 | 0.4996 | |
|
| 0.4735 | 2.0305 | 450 | 0.4997 | |
|
| 0.4139 | 2.2561 | 500 | 0.5017 | |
|
| 0.451 | 2.4817 | 550 | 0.5025 | |
|
| 0.4516 | 2.7073 | 600 | 0.5047 | |
|
| 0.4586 | 2.9329 | 650 | 0.5086 | |
|
| 0.4393 | 3.1585 | 700 | 0.5176 | |
|
| 0.4207 | 3.3841 | 750 | 0.5206 | |
|
| 0.3999 | 3.6097 | 800 | 0.5249 | |
|
| 0.414 | 3.8353 | 850 | 0.5327 | |
|
| 0.4002 | 4.0609 | 900 | 0.5408 | |
|
| 0.3651 | 4.2865 | 950 | 0.5498 | |
|
| 0.3775 | 4.5121 | 1000 | 0.5528 | |
|
| 0.4012 | 4.7377 | 1050 | 0.5595 | |
|
| 0.3676 | 4.9633 | 1100 | 0.5668 | |
|
| 0.3634 | 5.1889 | 1150 | 0.5741 | |
|
| 0.3821 | 5.4146 | 1200 | 0.5793 | |
|
| 0.3903 | 5.6402 | 1250 | 0.5815 | |
|
| 0.3655 | 5.8658 | 1300 | 0.5820 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu124 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |