metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- ASR
- Papiamentu
- Whisper
- Speech Recognition
- generated_from_trainer
datasets:
- sonnygeorge/papi_asr_corpus
metrics:
- wer
model-index:
- name: Whisper Tiny Papiamentu
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Papi ASR
type: sonnygeorge/papi_asr_corpus
metrics:
- name: Wer
type: wer
value: 34.88457850873958
Whisper Tiny Papiamentu
This model is a fine-tuned version of openai/whisper-tiny on the Papi ASR dataset. It achieves the following results on the evaluation set:
- Loss: 0.3812
- Wer: 34.8846
- Cer: 17.4600
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 3
- training_steps: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.3142 | 0.07 | 50 | 0.4591 | 47.0684 | 29.9418 |
0.331 | 0.15 | 100 | 0.4139 | 37.9527 | 19.3123 |
0.3721 | 0.22 | 150 | 0.3897 | 34.8403 | 16.6445 |
0.3802 | 0.3 | 200 | 0.3812 | 34.8846 | 17.4600 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0