Spaces:
No application file
No application file
!pip install gradio --quiet | |
!pip install xformer --quiet | |
!pip install chromadb --quiet | |
!pip install langchain --quiet | |
!pip install accelerate --quiet | |
!pip install transformers --quiet | |
!pip install bitsandbytes --quiet | |
!pip install unstructured --quiet | |
!pip install sentence-transformers --quiet | |
import torch | |
import gradio as gr | |
from textwrap import fill | |
from IPython.display import Markdown, display | |
from langchain.prompts.chat import ( | |
ChatPromptTemplate, | |
HumanMessagePromptTemplate, | |
SystemMessagePromptTemplate, | |
) | |
from langchain import PromptTemplate | |
from langchain import HuggingFacePipeline | |
from langchain.vectorstores import Chroma | |
from langchain.schema import AIMessage, HumanMessage | |
from langchain.memory import ConversationBufferMemory | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.document_loaders import UnstructuredMarkdownLoader, UnstructuredURLLoader | |
from langchain.chains import LLMChain, SimpleSequentialChain, RetrievalQA, ConversationalRetrievalChain | |
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline | |
import warnings | |
warnings.filterwarnings('ignore') | |
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1" | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, torch_dtype=torch.float16, | |
trust_remote_code=True, | |
device_map="auto", | |
quantization_config=quantization_config | |
) | |
generation_config = GenerationConfig.from_pretrained(MODEL_NAME) | |
generation_config.max_new_tokens = 1024 | |
generation_config.temperature = 0.001 | |
generation_config.top_p = 0.95 | |
generation_config.do_sample = True | |
generation_config.repetition_penalty = 1.15 | |
pipeline = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=True, | |
generation_config=generation_config, | |
) | |
llm = HuggingFacePipeline( | |
pipeline=pipeline, | |
) | |
embeddings = HuggingFaceEmbeddings( | |
model_name="thenlper/gte-large", | |
model_kwargs={"device": "cuda"}, | |
encode_kwargs={"normalize_embeddings": True}, | |
urls = [ | |
"https://www.expansion.com/mercados/cotizaciones/valores/telefonica_M.TEF.html ", | |
"https://www.expansion.com/mercados/cotizaciones/valores/bbva_M.BBVA.html ", | |
"https://www.expansion.com/mercados/cotizaciones/valores/iberdrola_M.IBE.html", | |
"https://www.expansion.com/mercados/cotizaciones/valores/santander_M.SAN.html", | |
"https://www.expansion.com/mercados/cotizaciones/valores/ferrovial_M.FER.html", | |
"https://www.expansion.com/mercados/cotizaciones/valores/enagas_M.ENG.html", | |
"https://www.euroland.com/SiteFiles/market/search.asp?GUID=B8D60F4600CAF1479E480C0BA6CE775E&ViewPageNumber=1&ViewAllStockSelected=False&Operation=selection&SortWinLoser=False&SortDirection=&ColumnToSort=&ClickedWinLoser=&ClickedMarkCap=&NameSearch=&UpperLevel=&LowerLevel=&RegionalIndustry=&RegionalListName=&RegionalListID=&RegionalIndexName=&CorporateSites=False&SharesPerPage=50", | |
"https://www.expansion.com/mercados/cotizaciones/indices/ibex35_I.IB.html", | |
"https://es.investing.com/equities/telefonica-cash-flow", | |
"https://es.investing.com/equities/grupo-ferrovial-cash-flow", | |
"https://es.investing.com/equities/bbva-cash-flow", | |
"https://es.investing.com/equities/banco-santander-cash-flow", | |
"https://es.investing.com/equities/iberdrola-cash-flow", | |
"https://es.investing.com/equities/enagas-cash-flow", | |
"https://es.investing.com/equities/enagas-ratios", | |
"https://es.investing.com/equities/telefonica-ratios", | |
"https://es.investing.com/equities/grupo-ferrovial-ratios", | |
"https://es.investing.com/equities/bbva-ratios", | |
"https://es.investing.com/equities/banco-santander-ratios", | |
"https://es.investing.com/equities/iberdrola-ratios" | |
] | |
loader = UnstructuredURLLoader(urls=urls) | |
documents = loader.load() | |
len(documents) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64) | |
texts_chunks = text_splitter.split_documents(documents) | |
len(texts_chunks) | |
template = """ | |
[INST] <> | |
Actúa como un bot financiero experto en el análsis de valores cotizados en el IBEX-35 | |
<> | |
{context} | |
{question} [/INST] | |
""" | |
prompt = PromptTemplate(template=template, input_variables=["context", "question"]) | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=db.as_retriever(search_kwargs={"k": 2}), | |
return_source_documents=True, | |
chain_type_kwargs={"prompt": prompt}, | |
) | |
query = "¿Cuál es el precio de la acción de BBVA hoy?" | |
result_ = qa_chain( | |
query | |
) | |
result = result_["result"].strip() | |
display(Markdown(f"<b>{query}</b>")) | |
display(Markdown(f"<p>{result}</p>")) | |
query = "Haz un análisis técnico de BBVA para el año 2022" | |
result_ = qa_chain( | |
query | |
) | |
result = result_["result"].strip() | |
display(Markdown(f"<b>{query}</b>")) | |
display(Markdown(f"<p>{result}</p>")) | |
result_["source_documents"] | |
custom_template = """You are finance AI Assistant Given the | |
following conversation and a follow up question, rephrase the follow up question | |
to be a standalone question. At the end of standalone question add this | |
'Answer the question in English language.' If you do not know the answer reply with 'I am sorry, I dont have enough information'. | |
Chat History: | |
{chat_history} | |
Follow Up Input: {question} | |
Standalone question: | |
""" | |
CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template) | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=db.as_retriever(search_kwargs={"k": 2}), | |
memory=memory, | |
condense_question_prompt=CUSTOM_QUESTION_PROMPT, | |
) | |
query = "Haz un análisis técnico definiendo todos los ratios de BBVA para el año 2021" | |
result_ = qa_chain({"question": query}) | |
result = result_["answer"].strip() | |
display(Markdown(f"<b>{query}</b>")) | |
display(Markdown(f"<p>{result}</p>")) | |
query = "¿Cuánto han crecido las ventas de Iberdrola en los últimos cinco años?" | |
result_ = qa_chain({"question": query}) | |
result = result_["answer"].strip() | |
display(Markdown(f"<b>{query}</b>")) | |
display(Markdown(f"<p>{result}</p>")) | |
query = "¿Cuál es el precio medio de la acción de Iberdrola en 2022?" | |
result_ = qa_chain({"question": query}) | |
result = result_["answer"].strip() | |
display(Markdown(f"<b>{query}</b>")) | |
display(Markdown(f"<p>{result}</p>")) | |
def querying(query, history): | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=db.as_retriever(search_kwargs={"k": 2}), | |
memory=memory, | |
condense_question_prompt=CUSTOM_QUESTION_PROMPT, | |
) | |
result = qa_chain({"question": query}) | |
return result["answer"].strip() | |
iface = gr.ChatInterface( | |
fn = querying, | |
chatbot=gr.Chatbot(height=600), | |
textbox=gr.Textbox(placeholder="¿Cuál es el precio de la acción de BBVA hoy?", container=False, scale=7), | |
title="RanitaRené", | |
theme="soft", | |
examples=["¿Cuál es el precio de la acción de BBVA hoy?", | |
"Haz un análisis técnico de BBVA para el año 2022" | |
], | |
cache_examples=True, | |
retry_btn="Repetir", | |
undo_btn="Deshacer", | |
clear_btn="Borrar", | |
submit_btn="Enviar" | |
) | |
iface.launch(share=True) |