demo / app.py
AnonymousSub's picture
Create app.py
2b935c8 verified
raw
history blame
7.96 kB
from tenacity import retry, stop_after_attempt, wait_random_exponential
from tqdm import tqdm
import time
import sys
# import openai
import time
# import pandas as pd
import random
import csv
import os
import pickle
import json
import nltk
nltk.download('punkt')
nltk.download('stopwords')
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
import string
from typing import List
import difflib
# import tiktoken
import re
from nltk.tokenize import sent_tokenize
from collections import defaultdict
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import numpy as np
from retrieve import get_retrieved_results, get_slide
# Ensure you have downloaded the 'punkt' tokenizer models
nltk.download('punkt')
import streamlit as st
# Get the parent directory
# parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
# Add the parent directory to the system path
# sys.path.append(parent_dir)
from utils import AzureModels, write_to_file, read_from_file
# from utils_open import OpenModels
# Function to calculate similarity
def calculate_similarity(sentence1: str, sentence2: str) -> float:
return difflib.SequenceMatcher(None, sentence1, sentence2).ratio()
# Function to highlight sentences based on similarity
def highlight_sentences(predicted: str, ground_truth: str) -> str:
ground_truth_sentences = nltk.sent_tokenize(ground_truth)
predicted_sentences = nltk.sent_tokenize(predicted)
highlighted_text = ""
for pred_sentence in predicted_sentences:
max_similarity = 0
for gt_sentence in ground_truth_sentences:
similarity = calculate_similarity(pred_sentence, gt_sentence)
if similarity > max_similarity:
max_similarity = similarity
# Determine shade of green
shade = max_similarity # No need to convert to int, max_similarity is already in [0, 1]
highlighted_text += f'<span style="background-color: rgba(0, 255, 0, {shade})">{pred_sentence}</span> '
return highlighted_text
st.title('Multi-Document Narrative Generation')
options = ["Select", "Adobe Firefly", "Adobe Acrobat"]
selection = st.selectbox('Select an example', options)
if selection=="Select":
pass
elif selection=="Adobe Firefly":
with open('wiki_1.json', 'r') as fr:
list_1 = json.load(fr)
with open('wiki_2.json', 'r') as fr:
list_2 = json.load(fr)
document_name = "Adobe Firefly"
section_names = ["Introduction"]*7+["History"]*2
ref_doc_indices = np.arange(1,8).tolist() + np.arange(1,3).tolist()
else:
with open('wiki_2.json', 'r') as fr:
list_1 = json.load(fr)
with open('wiki_1.json', 'r') as fr:
list_2 = json.load(fr)
document_name = "Adobe Acrobat"
section_names = ["Introduction"]*3+["History"]*3+["Document Cloud"]*2
ref_doc_indices = np.arange(1,4).tolist() + np.arange(1,4).tolist() + np.arange(1,3).tolist()
inp_doc_list = []
inp_keys_list = []
retrieved_doc_list = []
if selection!='Select':
# for item, ret_item in zip(list_1, retrieved_out):
for item in list_1:
for key in item['ref_abstract']:
inp_doc_list.append(item['ref_abstract'][key])
inp_keys_list.append(key)
# retrieved_doc_list.append(ret_item['ref_abstract'][key]['abstract'])
# Initialize session state
if 'retrieve_clicked' not in st.session_state:
st.session_state.retrieve_clicked = False
retrieve_prompt_template = "{} : Document {} for the '{}' Section of the Article titled '{}'"
ui_doc_list = []
ui_retrieved_doc_list = []
# 5 input text boxes for 5 input documents
st.header('Input Documents')
# doc1 = st.text_area('Document 1', value="1. What up bruh??")
for i in range(len(section_names)):
ui_doc_list.append(st.text_area(retrieve_prompt_template.format(inp_keys_list[i], ref_doc_indices[i], section_names[i], document_name), value=inp_doc_list[i]))
if st.button('Retrieve'):
if 'organize_clicked' not in st.session_state:
st.session_state.organize_clicked = False
retrieved_out = get_retrieved_results("gpt4o", 0, "fixed", list_2, list_1)
write_to_file("retrieved_docs.json", retrieved_out)
retrieved_out_train = get_retrieved_results("gpt4o", 0, "fixed", list_1, list_2)
write_to_file("retrieved_docs_train.json", retrieved_out_train)
for ret_item in retrieved_out:
for key in ret_item['ref_abstract']:
# inp_doc_list.append(item['ref_abstract'][key])
retrieved_doc_list.append(ret_item['ref_abstract'][key]['abstract'])
# Step 2: Lowercase the documents
st.session_state.retrieve_clicked = True
st.header('Retrieved Documents')
for i in range(len(section_names)):
ui_retrieved_doc_list.append(st.text_area(retrieve_prompt_template.format(inp_keys_list[i], ref_doc_indices[i], section_names[i], document_name), value=retrieved_doc_list[i]))
if st.session_state.retrieve_clicked:
if st.button('Organize'):
if 'summarize_clicked' not in st.session_state:
st.session_state.summarize_clicked = False
st.session_state.organize_clicked = True
st.header("Organization of the documents in the narrative")
topics_list = ["Introduction", "History", "Document Cloud"]
organize_list = []
ui_organize_list = []
test_list = read_from_file("retrieved_docs.json")
train_list = read_from_file("retrieved_docs_train.json")
organize_out = get_retrieved_results("gpt4o", 1, "fixed", train_list, test_list, True)
for i in range(len(organize_out)):
organize_list.append(organize_out[i])
ui_organize_list.append(st.text_area("Section: " + topics_list[i], value=organize_out[i]))
write_to_file("organized_docs.json", organize_out)
if st.session_state.organize_clicked:
if st.button("Summarize"):
# if 'narrative_clicked' not in st.session_state:
# st.session_state.narrative_clicked = False
st.session_state.summarize_clicked = True
st.header("Intent-based multi-document summary")
topics_list = ["Introduction", "History", "Document Cloud"]
generate_list = []
ui_generate_list = []
slides_list = []
test_list = read_from_file("retrieved_docs.json")
train_list = read_from_file("retrieved_docs_train.json")
organize_out = read_from_file("organized_docs.json")
gen_summary_dict = get_retrieved_results("gpt4o", 1, "fixed", train_list, test_list, False, organize_out)
for i in range(len(gen_summary_dict)):
highlighted_summary = highlight_sentences(gen_summary_dict[i], test_list[i]['abstract'])
slides_list.append(get_slide(topics_list[i], gen_summary_dict[i]))
# generate_list.append(.format(topics_list[i], gen_summary_dict[i]))
st.markdown(f"## {topics_list[i]}")
# st.markdown(f"*{gen_summary_dict[i]}*")
st.markdown(highlighted_summary, unsafe_allow_html=True)
st.header("Generated Narrative")
for i in range(len(slides_list)):
st.markdown("---")
st.markdown(slides_list[i])
st.markdown("---")
# if st.session_state.summarize_clicked:
# if st.button("Narrative"):
# st.session_state.narrative_clicked = True