Spaces:
Running
Running
File size: 5,937 Bytes
711e2cf 62c2edb 711e2cf a749292 be1e29d 62c2edb a749292 79746f6 ac592f2 4d31938 af14138 a749292 61a37e8 18def71 af14138 61a37e8 4d31938 d1d6f35 4d31938 61a37e8 4d31938 18def71 711e2cf 4dcdb35 a749292 ac592f2 dd08fd0 a749292 dd08fd0 18def71 61a37e8 dd08fd0 d0f2987 dd08fd0 a749292 711e2cf a749292 dd08fd0 a749292 dd08fd0 a749292 dd08fd0 be1e29d 0b4c6fc be1e29d 0b4c6fc be1e29d 0b4c6fc be1e29d dd08fd0 be1e29d 0b4c6fc be1e29d a749292 dd08fd0 61a37e8 5f2ab23 79746f6 a749292 dd08fd0 a749292 79746f6 61a37e8 0b4c6fc 65cf8b6 0b4c6fc dd08fd0 0b4c6fc dd08fd0 0b4c6fc dd08fd0 65cf8b6 6f13504 0b4c6fc 6f13504 0b4c6fc 7ee1423 e9361c0 79746f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import atexit
import base64
import os
import shutil
import tempfile
import time
import fitz
import gradio as gr
import spaces
import torch
import transformers
from PIL import Image, ImageEnhance
from transformers import AutoModel, AutoTokenizer
transformers.utils.move_cache()
transformers.logging.set_verbosity_error()
model_name = "ucaslcl/GOT-OCR2_0"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, device_map=device)
model = model.eval().to(device)
# 创建一个持久的临时目录
TEMP_DIR = tempfile.mkdtemp()
def cleanup():
"""清理临时目录"""
shutil.rmtree(TEMP_DIR, ignore_errors=True)
# 确保在程序退出时清理临时目录
atexit.register(cleanup)
def pdf_to_images(pdf_path):
images = []
pdf_document = fitz.open(pdf_path)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
zoom = 10 # 增加缩放比例到10
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=mat, alpha=False)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# 增对比度
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(1.5) # 增加50%的对比度
images.append(img)
pdf_document.close()
return images
@spaces.GPU()
def convert_pdf_to_images(file):
if file is None:
return "错误:未提供文件", None
try:
if not file.name.lower().endswith(".pdf"):
return "错误:请上传PDF文件", None
images = pdf_to_images(file.name)
image_paths = []
for i, image in enumerate(images):
img_path = os.path.join(TEMP_DIR, f"page_{i+1}.png")
image.save(img_path, "PNG")
image_paths.append(img_path)
return "PDF转换为图片成功", image_paths
except Exception as e:
return f"错误: {str(e)}", None
@spaces.GPU()
def ocr_process(image, got_mode, ocr_color="", ocr_box="", progress=gr.Progress()):
if image is None:
return "错误:未选择图片"
try:
progress(0, desc="开始处理...")
# 模拟OCR处理的不同阶段
progress(0.2, desc="图像预处理...")
time.sleep(0.5)
progress(0.4, desc="文字识别中...")
time.sleep(0.5)
progress(0.6, desc="后处理...")
time.sleep(0.5)
result = process_single_image(image, got_mode, ocr_color, ocr_box)
progress(0.8, desc="生成结果...")
time.sleep(0.5)
progress(1, desc="处理完成")
return result
except Exception as e:
return f"错误: {str(e)}"
def process_single_image(image_path, got_mode, ocr_color, ocr_box):
result_path = f"{os.path.splitext(image_path)[0]}_result.html"
if "plain" in got_mode:
if "multi-crop" in got_mode:
res = model.chat_crop(tokenizer, image_path, ocr_type="ocr")
else:
res = model.chat(tokenizer, image_path, ocr_type="ocr", ocr_box=ocr_box, ocr_color=ocr_color)
return res
elif "format" in got_mode:
if "multi-crop" in got_mode:
res = model.chat_crop(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
else:
res = model.chat(tokenizer, image_path, ocr_type="format", ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)
if os.path.exists(result_path):
with open(result_path, "r", encoding="utf-8") as f:
html_content = f.read()
encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8")
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
preview = f'<iframe src="{data_uri}" width="100%" height="600px"></iframe>'
download_link = f'<a href="{data_uri}" download="result.html">下载完整结果</a>'
return f"{download_link}\n\n{preview}"
return "错误: 未知的OCR模式"
with gr.Blocks() as demo:
gr.Markdown("# OCR 图像识别")
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="上传PDF文件")
convert_button = gr.Button("转换PDF为图片")
with gr.Column(scale=2):
image_gallery = gr.Gallery(label="图片预览", columns=3)
with gr.Row():
with gr.Column(scale=1):
selected_image = gr.State(value=None) # 使用 gr.State 来存储选中的图片路径
preview_image = gr.Image(label="选中的图片", type="filepath")
got_mode = gr.Dropdown(
choices=[
"plain texts OCR",
"format texts OCR",
"plain multi-crop OCR",
"format multi-crop OCR",
"plain fine-grained OCR",
"format fine-grained OCR",
],
label="OCR模式",
value="plain texts OCR",
)
ocr_color = gr.Textbox(label="OCR颜色 (仅用于fine-grained模式)")
ocr_box = gr.Textbox(label="OCR边界框 (仅用于fine-grained模式)")
ocr_button = gr.Button("开始OCR识别")
with gr.Column(scale=2):
ocr_output = gr.HTML(label="识别结果")
def select_image(evt: gr.SelectData, gallery):
selected = gallery[evt.index]
return selected
image_gallery.select(select_image, image_gallery, selected_image)
convert_button.click(convert_pdf_to_images, inputs=[pdf_input], outputs=[gr.Textbox(visible=False), image_gallery])
ocr_button.click(ocr_process, inputs=[selected_image, got_mode, ocr_color, ocr_box], outputs=ocr_output)
if __name__ == "__main__":
demo.launch()
|