File size: 18,732 Bytes
3e2d289
7e2e27e
 
 
3e2d289
 
 
 
 
 
353dae0
3e2d289
 
 
 
 
 
 
 
 
 
 
 
e8a76b4
3e2d289
7e2e27e
 
 
353dae0
3e2d289
7e2e27e
 
 
 
 
 
3e2d289
668f0a9
7e2e27e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
668f0a9
 
 
50ccefb
668f0a9
7e2e27e
 
 
 
 
 
 
 
 
 
 
668f0a9
3e2d289
 
e8a76b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2d289
 
 
 
 
 
 
2acad1e
7e2e27e
 
 
 
 
3e2d289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10419a8
 
cad610c
 
3e2d289
10419a8
 
3e2d289
 
c6fc930
3e2d289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e2e27e
3e2d289
7e2e27e
 
 
 
3e2d289
 
 
 
c6fc930
3e2d289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2acad1e
3e2d289
c6fc930
3e2d289
 
 
 
e8a76b4
2acad1e
 
 
 
 
 
 
 
 
 
 
43da152
2acad1e
7e2e27e
d16c9d0
 
f866116
d16c9d0
 
 
 
 
 
 
 
7e2e27e
2acad1e
7e2e27e
 
 
 
 
 
 
 
 
3e2d289
 
7e2e27e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2d289
7e2e27e
3e2d289
7e2e27e
 
3e2d289
 
 
 
 
 
7e2e27e
 
3e2d289
 
 
 
 
 
 
 
 
 
 
7e2e27e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2d289
7e2e27e
3e2d289
7e2e27e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2d289
 
 
 
 
 
 
 
 
7e2e27e
3e2d289
 
 
 
 
 
1987a15
3e2d289
7e2e27e
 
 
 
 
 
 
 
 
3e2d289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10419a8
 
3e2d289
 
 
 
 
ee31388
3e2d289
ee31388
 
 
 
 
3e2d289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a3c45
 
3e2d289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a3c45
 
 
3e2d289
469f6b5
3e2d289
7e2e27e
3e2d289
7e2e27e
 
 
61d0f54
7e2e27e
3e2d289
 
 
 
 
 
7e2e27e
3e2d289
7e2e27e
 
 
 
 
3e2d289
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import os
import requests
import json
import base64

os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
os.system('make -C ./whisper.cpp')
os.system('bash ./whisper.cpp/models/download-ggml-model.sh small')
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base')
os.system('bash ./whisper.cpp/models/download-ggml-model.sh medium')
os.system('bash ./whisper.cpp/models/download-ggml-model.sh large')
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base.en')


import gradio as gr
from pathlib import Path
import pysrt
import pandas as pd
import re
import time

from pytube import YouTube

headers = {'Authorization': os.environ['DeepL_API_KEY']}


import torch

whisper_models = ["base", "small", "medium", "large", "base.en"]

custom_models = ["belarus-small"]

combined_models = []
combined_models.extend(whisper_models)
combined_models.extend(custom_models)


LANGUAGES = {
    "en": "English",
    "zh": "Chinese",
    "de": "German",
    "es": "Spanish",
    "ru": "Russian",
    "ko": "Korean",
    "fr": "French",
    "ja": "Japanese",
    "pt": "Portuguese",
    "tr": "Turkish",
    "pl": "Polish",
    "ca": "Catalan",
    "nl": "Dutch",
    "ar": "Arabic",
    "sv": "Swedish",
    "it": "Italian",
    "id": "Indonesian",
    "hi": "Hindi",
    "fi": "Finnish",
    "vi": "Vietnamese",
    "he": "Hebrew",
    "uk": "Ukrainian",
    "el": "Greek",
    "ms": "Malay",
    "cs": "Czech",
    "ro": "Romanian",
    "da": "Danish",
    "hu": "Hungarian",
    "ta": "Tamil",
    "no": "Norwegian",
    "th": "Thai",
    "ur": "Urdu",
    "hr": "Croatian",
    "bg": "Bulgarian",
    "lt": "Lithuanian",
    "la": "Latin",
    "mi": "Maori",
    "ml": "Malayalam",
    "cy": "Welsh",
    "sk": "Slovak",
    "te": "Telugu",
    "fa": "Persian",
    "lv": "Latvian",
    "bn": "Bengali",
    "sr": "Serbian",
    "az": "Azerbaijani",
    "sl": "Slovenian",
    "kn": "Kannada",
    "et": "Estonian",
    "mk": "Macedonian",
    "br": "Breton",
    "eu": "Basque",
    "is": "Icelandic",
    "hy": "Armenian",
    "ne": "Nepali",
    "mn": "Mongolian",
    "bs": "Bosnian",
    "kk": "Kazakh",
    "sq": "Albanian",
    "sw": "Swahili",
    "gl": "Galician",
    "mr": "Marathi",
    "pa": "Punjabi",
    "si": "Sinhala",
    "km": "Khmer",
    "sn": "Shona",
    "yo": "Yoruba",
    "so": "Somali",
    "af": "Afrikaans",
    "oc": "Occitan",
    "ka": "Georgian",
    "be": "Belarusian",
    "tg": "Tajik",
    "sd": "Sindhi",
    "gu": "Gujarati",
    "am": "Amharic",
    "yi": "Yiddish",
    "lo": "Lao",
    "uz": "Uzbek",
    "fo": "Faroese",
    "ht": "Haitian creole",
    "ps": "Pashto",
    "tk": "Turkmen",
    "nn": "Nynorsk",
    "mt": "Maltese",
    "sa": "Sanskrit",
    "lb": "Luxembourgish",
    "my": "Myanmar",
    "bo": "Tibetan",
    "tl": "Tagalog",
    "mg": "Malagasy",
    "as": "Assamese",
    "tt": "Tatar",
    "haw": "Hawaiian",
    "ln": "Lingala",
    "ha": "Hausa",
    "ba": "Bashkir",
    "jw": "Javanese",
    "su": "Sundanese",
}

# language code lookup by name, with a few language aliases
source_languages = {
    **{language: code for code, language in LANGUAGES.items()},
    "Burmese": "my",
    "Valencian": "ca",
    "Flemish": "nl",
    "Haitian": "ht",
    "Letzeburgesch": "lb",
    "Pushto": "ps",
    "Panjabi": "pa",
    "Moldavian": "ro",
    "Moldovan": "ro",
    "Sinhalese": "si",
    "Castilian": "es",
    "Let the model analyze": "Let the model analyze"
}

DeepL_language_codes_for_translation = {
"Bulgarian": "BG",
"Czech": "CS",
"Danish": "DA",
"German": "DE",
"Greek": "EL",
"English": "EN",
"Spanish": "ES",
"Estonian": "ET",
"Finnish": "FI",
"French": "FR",
"Hungarian": "HU",
"Indonesian": "ID",
"Italian": "IT",
"Japanese": "JA",
"Lithuanian": "LT",
"Latvian": "LV",
"Dutch": "NL",
"Polish": "PL",
"Portuguese": "PT",
"Romanian": "RO",
"Russian": "RU",
"Slovak": "SK",
"Slovenian": "SL",
"Swedish": "SV",
"Turkish": "TR",
"Ukrainian": "UK",
"Chinese": "ZH"
}


transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)


source_language_list = [key[0] for key in source_languages.items()]
translation_models_list = [key[0] for key in DeepL_language_codes_for_translation.items()]


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("DEVICE IS: ")
print(device)
  
videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)


def get_youtube(video_url):
    yt = YouTube(video_url)
    abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
    print("LADATATTU POLKUUN")
    print(abs_video_path)

    
    return abs_video_path

def speech_to_text(video_file_path, selected_source_lang, whisper_model):
    """
    # Youtube with translated subtitles using OpenAI Whisper and Opus-MT models.
    # Currently supports only English audio
    This space allows you to:
    1. Download youtube video with a given url
    2. Watch it in the first video component
    3. Run automatic speech recognition on the video using fast Whisper models
    4. Translate the recognized transcriptions to 26 languages supported by deepL
    5. Download generated subtitles in .vtt and .srt formats
    6. Watch the the original video with generated subtitles
    
    Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
    This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
    """
    
    if(video_file_path == None):
        raise ValueError("Error no video input")
    print(video_file_path)
    try:
        _,file_ending = os.path.splitext(f'{video_file_path}')
        print(f'file enging is {file_ending}')
        print("starting conversion to wav")
        os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{video_file_path.replace(file_ending, ".wav")}"')
        print("conversion to wav ready")



        print("starting whisper c++")
        srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
        os.system(f'rm -f {srt_path}')
        if selected_source_lang == "Let the model analyze":
            os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l "auto" -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
        else:
            if whisper_model in custom_models:
                os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./converted_models/ggml-{whisper_model}.bin -osrt')
            else:
                os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
        print("starting whisper done with whisper")
    except Exception as e:
        raise RuntimeError("Error converting video to audio")

    try:    

        df = pd.DataFrame(columns = ['start','end','text'])
        srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
        subs = pysrt.open(srt_path)


        objects = []
        for sub in subs:
            
            
            start_hours = str(str(sub.start.hours) + "00")[0:2] if len(str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2]
            end_hours = str(str(sub.end.hours) + "00")[0:2] if len(str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2]
            
            start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2]
            end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2]
            
            start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2]
            end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2]
            
            start_millis = str(str(sub.start.milliseconds) + "000")[0:3]
            end_millis = str(str(sub.end.milliseconds) + "000")[0:3]
            objects.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}', f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}'])

        for object in objects:
            srt_to_df = {
            'start': [object[1]],
            'end': [object[2]], 
            'text': [object[0]] 
            }
    
            df = pd.concat([df, pd.DataFrame(srt_to_df)])
        
                    
        return df
    
    except Exception as e:
        raise RuntimeError("Error Running inference with local model", e)


def translate_transcriptions(df, selected_translation_lang_2):
    if selected_translation_lang_2 is None:
        selected_translation_lang_2 = 'English'
    df.reset_index(inplace=True)
    
    print("start_translation")
    translations = []
    
    

    text_combined = ""
    for i, sentence in enumerate(df['text']):
        if i == 0:
            text_combined = sentence
        else:
            text_combined = text_combined + '\n' + sentence

    data = {'text': text_combined,
    'tag_spitting': 'xml',
    'target_lang': DeepL_language_codes_for_translation.get(selected_translation_lang_2)
           }
    try:
        
        usage = requests.get('https://api-free.deepl.com/v2/usage', headers=headers)
        usage = json.loads(usage.text)
        try:
            print('Usage is at: ' + str(usage['character_count']) + 'characters')
        except Exception as e:
            print(e)
        
        if usage['character_count'] >= 490000:
            print("USAGE CLOSE TO LIMIT")
        
        response = requests.post('https://api-free.deepl.com/v2/translate', headers=headers, data=data)
    
        # Print the response from the server
        translated_sentences = json.loads(response.text)
        translated_sentences = translated_sentences['translations'][0]['text'].split('\n')
        df['translation'] = translated_sentences
    except Exception as e:
        print("EXCEPTION WITH DEEPL API")
        print(e)
        df['translation'] = df['text']
        
    print("translations done")

    print("Starting SRT-file creation")
    print(df.head())
    df.reset_index(inplace=True)
    with open('subtitles.vtt','w', encoding="utf-8") as file:
        print("Starting WEBVTT-file creation")
    
        for i in range(len(df)):
            if i == 0:
                file.write('WEBVTT')
                file.write('\n')

            else:
                file.write(str(i+1))
                file.write('\n')
                start = df.iloc[i]['start']
               
            
                file.write(f"{start.strip()}")
                
                stop = df.iloc[i]['end']
                
                
                file.write(' --> ')
                file.write(f"{stop}")
                file.write('\n')
                file.writelines(df.iloc[i]['translation'])
                if int(i) != len(df)-1:
                    file.write('\n\n')

    print("WEBVTT DONE") 

    with open('subtitles.srt','w', encoding="utf-8") as file:
        print("Starting SRT-file creation")
    
        for i in range(len(df)):
            file.write(str(i+1))
            file.write('\n')
            start = df.iloc[i]['start']
           
        
            file.write(f"{start.strip()}")
            
            stop = df.iloc[i]['end']
            
            
            file.write(' --> ')
            file.write(f"{stop}")
            file.write('\n')
            file.writelines(df.iloc[i]['translation'])
            if int(i) != len(df)-1:
                file.write('\n\n')
        
    print("SRT DONE") 
    subtitle_files = ['subtitles.vtt','subtitles.srt']
    
    return df, subtitle_files

# def burn_srt_to_video(srt_file, video_in):
    
#     print("Starting creation of video wit srt")
    
#     try:
#         video_out = video_in.replace('.mp4', '_out.mp4')
#         print(os.system('ls -lrth'))
#         print(video_in)
#         print(video_out)
#         command = 'ffmpeg -i "{}" -y -vf subtitles=./subtitles.srt "{}"'.format(video_in, video_out)
#         os.system(command)
        
#         return video_out
        
#     except Exception as e:
#         print(e)
#         return video_out

def create_video_player(subtitle_files, video_in):

    with open(video_in, "rb") as file:
        video_base64 = base64.b64encode(file.read())
    with open('./subtitles.vtt', "rb") as file:
        subtitle_base64 = base64.b64encode(file.read())

    video_player = f'''<video id="video" controls preload="metadata">
      <source src="data:video/mp4;base64,{str(video_base64)[2:-1]}" type="video/mp4" />
      <track
        label="English"
        kind="subtitles"
        srclang="en"
        src="data:text/vtt;base64,{str(subtitle_base64)[2:-1]}"
        default />
    </video>
    '''
    #video_player = gr.HTML(video_player)
    return video_player




# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_out = gr.Video(label="Video Out", mirror_webcam=False)



df_init = pd.DataFrame(columns=['start','end','text', 'translation'])

selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True)
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)

transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
transcription_and_translation_df = gr.DataFrame(value=df_init,label="Transcription and translation dataframe", max_rows = 10, wrap=True, overflow_row_behaviour='paginate')

subtitle_files = gr.File(
                label="Download srt-file",
                file_count="multiple",
                type="file",
                interactive=False,
            )

video_player = gr.HTML('<p>video will be played here after you press the button at step 4')


demo = gr.Blocks(css='''
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
''')
demo.encrypt = False
with demo:
    transcription_var = gr.Variable()
    
    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            ### This space allows you to: 
            ##### 1. Download youtube video with a given URL
            ##### 2. Watch it in the first video component
            ##### 3. Run automatic speech recognition on the video using Whisper
            ##### 4. Translate the recognized transcriptions to 26 languages supported by deepL
            ##### 5. Burn the translations to the original video and watch the video in the 2nd video component
            ''')
            
        with gr.Column():
            gr.Markdown('''
            ### 1. Copy any Youtube video URL to box below or click one of the examples and then press button "1. Download Youtube video"-button:
            ''')
            examples = gr.Examples(examples=
                [ "https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24", 
                  "https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren", 
                  "https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision"],
               label="Examples", inputs=[youtube_url_in])
            
    with gr.Row():
        with gr.Column():
            youtube_url_in.render()
            download_youtube_btn = gr.Button("Step 1. Download Youtube video")
            download_youtube_btn.click(get_youtube, [youtube_url_in], [
                video_in])
            print(video_in)
            

    with gr.Row():
        with gr.Column():
            video_in.render()
            with gr.Column():
                gr.Markdown('''
                ##### Here you can start the transcription and translation process.
                ##### Be aware that processing will last some time. With base model it is around 3x speed
                ##### Please select source language for better transcriptions. Using 'Let the model analyze' makes mistakes sometimes and may lead to bad transcriptions
                ''')
            selected_source_lang.render()
            selected_whisper_model.render()
            transcribe_btn = gr.Button("Step 2. Transcribe audio")
            transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model], transcription_df)

            
    with gr.Row():
        gr.Markdown('''
        ##### Here you will get transcription  output
        ##### ''')

    with gr.Row():
        with gr.Column():
            transcription_df.render()
            
    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            ##### PLEASE READ BELOW 
            ##### Here you will can translate transcriptions to 26 languages.
            ##### If spoken language is not in the list, translation might not work. In this case original transcriptions are used
            ##### ''')
            selected_translation_lang_2.render()
            translate_transcriptions_button = gr.Button("Step 3. Translate transcription")
            translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2], [transcription_and_translation_df, subtitle_files])
            transcription_and_translation_df.render()

    with gr.Row():
        with gr.Column():
            gr.Markdown('''##### From here you can download subtitles in .srt or .vtt format''')
            subtitle_files.render()
            
    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            ##### Now press the Step 4. Button to create output video with translated transcriptions
            ##### ''')
            create_video_button = gr.Button("Step 4. Create and add subtitles to video")
            print(video_in)
            create_video_button.click(create_video_player, [subtitle_files,video_in], [
                video_player])
            video_player.render()



                
demo.launch()