File size: 4,249 Bytes
5e5249d
 
 
7e59f2d
f7fb6bc
5e5249d
 
3080342
5e5249d
f7fb6bc
2e33ec7
7e59f2d
 
 
f7fb6bc
 
dd0c774
 
 
5e5249d
dd0c774
f7fb6bc
7e59f2d
 
 
 
 
 
 
bb12293
7e59f2d
 
f492dde
bb12293
883fd6c
5e5249d
7e59f2d
 
 
 
 
 
 
5e5249d
883fd6c
 
7e59f2d
 
 
883fd6c
2e33ec7
 
7e59f2d
 
5e5249d
f7fb6bc
dd0c774
5e5249d
 
 
 
 
f8460ad
5e5249d
 
 
 
 
dd0c774
 
5e5249d
 
dd0c774
5e5249d
 
 
f7fb6bc
5e5249d
 
 
 
f7fb6bc
bb12293
7e59f2d
 
 
 
2e33ec7
 
 
 
 
7e59f2d
 
2e33ec7
 
 
 
 
7e59f2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7fb6bc
2e33ec7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer


DESCRIPTION = """\
Shakti is a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service
For more details, please check [here](https://arxiv.org/pdf/2410.11331v1).
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "2048"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "SandLogicTechnologies/Shakti-2.5B"
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI"))
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    token=os.getenv("SHAKTI")

)
model.eval()


@spaces.GPU(duration=180)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    # conversation = [json.loads(os.getenv("PROMPT"))]
    conversation = []
    for user, assistant in chat_history:
        conversation.extend(
            [
                # json.loads(os.getenv("PROMPT")),
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=50.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        # gr.Slider(
        #     label="Top-p (nucleus sampling)",
        #     minimum=0.05,
        #     maximum=1.0,
        #     step=0.05,
        #     value=0.9,
        # ),
        # gr.Slider(
        #     label="Top-k",
        #     minimum=1,
        #     maximum=1000,
        #     step=1,
        #     value=50,
        # ),
        # gr.Slider(
        #     label="Repetition penalty",
        #     minimum=1.0,
        #     maximum=2.0,
        #     step=0.05,
        #     value=1.2,
        # ),
    ],
    stop_btn=None,
    examples=[
            ["Tell me a story"], ["write a short poem which is hard to sing"], ['मुझे भारतीय इतिहास के बारे में बताएं']
    ],
    cache_examples=False,
)

with gr.Blocks(css="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()