Spaces:
Build error
Build error
File size: 9,332 Bytes
a6d437d 363cb1e a6d437d 9c72c1b a6d437d 363cb1e a6d437d 363cb1e a6d437d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# app.py
import os
import re
import uuid
import gradio as gr
import torch
import torch.nn.functional as F
from dotenv import load_dotenv
from typing import List, Tuple, Dict, Any
from transformers import AutoTokenizer, AutoModel
from openai import OpenAI
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain_chroma import Chroma
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.config import Settings
import chromadb
from utils import load_env_variables, parse_and_route, escape_special_characters
from globalvars import API_BASE, intention_prompt, tasks, system_message, metadata_prompt, model_name
import spaces
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_community.document_compressors.jina_rerank import JinaRerank
from langchain import hub
from langchain.chains.retrieval import create_retrieval_chain
from langchain.chains.combine_documents.stuff import create_stuff_documents_chain
load_dotenv()
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:180'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_CACHE_DISABLE'] = '1'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hf_token, yi_token = load_env_variables()
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token, trust_remote_code=True)
model = None
@spaces.GPU
def load_model():
global model
if model is None:
model = AutoModel.from_pretrained(model_name, token=hf_token, trust_remote_code=True).to(device)
return model
# Load model
jina_model = load_model()
def clear_cuda_cache():
torch.cuda.empty_cache()
client = OpenAI(api_key=yi_token, base_url=API_BASE)
chroma_client = chromadb.Client(Settings())
chroma_collection = chroma_client.create_collection("all-my-documents")
class JinaEmbeddingFunction(EmbeddingFunction):
def __init__(self, model, tokenizer, intention_client):
self.model = model
self.tokenizer = tokenizer
self.intention_client = intention_client
def __call__(self, input: Documents) -> Tuple[List[List[float]], List[Dict[str, Any]]]:
embeddings_with_metadata = [self.compute_embeddings(doc) for doc in input]
embeddings = [item[0] for item in embeddings_with_metadata]
metadata = [item[1] for item in embeddings_with_metadata]
return embeddings, metadata
@spaces.GPU
def compute_embeddings(self, input_text: str):
escaped_input_text = escape_special_characters(input_text)
# Get the intention
intention_completion = self.intention_client.chat.completions.create(
model="yi-large",
messages=[
{"role": "system", "content": escape_special_characters(intention_prompt)},
{"role": "user", "content": escaped_input_text}
]
)
intention_output = intention_completion.choices[0].message.content
parsed_task = parse_and_route(intention_output)
selected_task = parsed_task if parsed_task in tasks else "DEFAULT"
task = tasks[selected_task]
# Get the metadata
metadata_completion = self.intention_client.chat.completions.create(
model="yi-large",
messages=[
{"role": "system", "content": escape_special_characters(metadata_prompt)},
{"role": "user", "content": escaped_input_text}
]
)
metadata_output = metadata_completion.choices[0].message.content
metadata = self.extract_metadata(metadata_output)
# Compute embeddings using Jina model
encoded_input = self.tokenizer(escaped_input_text, padding=True, truncation=True, return_tensors="pt").to(device)
with torch.no_grad():
model_output = self.model(**encoded_input, task=task)
embeddings = self.mean_pooling(model_output, encoded_input["attention_mask"])
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings.cpu().numpy().tolist()[0], metadata
def extract_metadata(self, metadata_output: str) -> Dict[str, str]:
pattern = re.compile(r'\"(\w+)\": \"([^\"]+)\"')
matches = pattern.findall(metadata_output)
metadata = {key: value for key, value in matches}
return metadata
@staticmethod
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def load_documents(file_path: str, mode: str = "elements"):
loader = UnstructuredFileLoader(file_path, mode=mode)
docs = loader.load()
return [doc.page_content for doc in docs]
def initialize_chroma(collection_name: str, embedding_function: JinaEmbeddingFunction):
db = Chroma(client=chroma_client, collection_name=collection_name, embedding_function=embedding_function)
return db
@spaces.GPU
def add_documents_to_chroma(documents: list, embedding_function: JinaEmbeddingFunction):
for doc in documents:
embeddings, metadata = embedding_function.compute_embeddings(doc)
chroma_collection.add(
ids=[str(uuid.uuid1())],
documents=[doc],
embeddings=[embeddings],
metadatas=[metadata]
)
@spaces.GPU
def rerank_documents(query: str, documents: List[str]) -> List[str]:
compressor = JinaRerank()
retriever = chroma_db.as_retriever(search_kwargs={"k": 15})
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
compressed_docs = compression_retriever.get_relevant_documents(query)
return [doc.page_content for doc in compressed_docs]
def query_chroma(query_text: str, embedding_function: JinaEmbeddingFunction):
query_embeddings, query_metadata = embedding_function.compute_embeddings(query_text)
result_docs = chroma_collection.query(
query_embeddings=[query_embeddings],
n_results=5
)
return result_docs
@spaces.GPU
def answer_query(message: str, chat_history: List[Tuple[str, str]], system_message: str, max_new_tokens: int, temperature: float, top_p: float):
# Query Chroma for relevant documents
results = query_chroma(message, embedding_function)
context = "\n\n".join([result['document'] for result in results['documents'][0]])
# Rerank the documents
reranked_docs = rerank_documents(message, context.split("\n\n"))
reranked_context = "\n\n".join(reranked_docs)
# Prepare the prompt for YI model
prompt = f"{system_message}\n\nContext: {reranked_context}\n\nHuman: {message}\n\nAssistant:"
# Generate response using YI model
response = client.chat.completions.create(
model="yi-large",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": f"Context: {reranked_context}\n\nHuman: {message}"}
],
max_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p
)
assistant_response = response.choices[0].message.content
chat_history.append((message, assistant_response))
return "", chat_history
# Initialize clients
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
embedding_function = JinaEmbeddingFunction(jina_model, tokenizer, intention_client)
chroma_db = initialize_chroma(collection_name="Jina-embeddings", embedding_function=embedding_function)
@spaces.GPU
def upload_documents(files):
for file in files:
loader = UnstructuredFileLoader(file.name)
documents = loader.load()
add_documents_to_chroma([doc.page_content for doc in documents], embedding_function)
return "Documents uploaded and processed successfully!"
@spaces.GPU
def query_documents(query):
results = query_chroma(query, embedding_function)
reranked_docs = rerank_documents(query, [result for result in results['documents'][0]])
return "\n\n".join(reranked_docs)
with gr.Blocks() as demo:
with gr.Tab("Upload Documents"):
document_upload = gr.File(file_count="multiple", file_types=["document"])
upload_button = gr.Button("Upload and Process")
upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())
with gr.Tab("Ask Questions"):
with gr.Row():
chat_interface = gr.ChatInterface(
answer_query,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
query_input = gr.Textbox(label="Query")
query_button = gr.Button("Query")
query_output = gr.Textbox()
query_button.click(query_documents, inputs=query_input, outputs=query_output)
if __name__ == "__main__":
demo.launch() |