LyNoS / README.md
andreped's picture
Dataset update
99bdd64 unverified
|
raw
history blame
7.23 kB
---
title: 'LyNoS: automatic lymph node segmentation using deep learning'
colorFrom: indigo
colorTo: indigo
sdk: docker
app_port: 7860
emoji: 🫁
pinned: false
license: mit
app_file: demo/app.py
---
<div align="center">
<h1 align="center">🫁 LyNoS πŸ€—</h1>
<h3 align="center">A lymph node segmentation dataset from contrast CT</h3>
[![license](https://img.shields.io/github/license/DAVFoundation/captain-n3m0.svg?style=flat-square)](https://github.com/raidionics/LyNoS/blob/main/LICENSE.md)
[![CI/CD](https://github.com/raidionics/LyNoS/actions/workflows/deploy.yml/badge.svg)](https://github.com/raidionics/LyNoS/actions/workflows/deploy.yml)
<a target="_blank" href="https://huggingface.co/spaces/andreped/LyNoS"><img src="https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Spaces-yellow.svg"></a>
<a href="https://colab.research.google.com/gist/andreped/274bf953771059fd9537877404369bed/lynos-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
[![paper](https://img.shields.io/badge/paper-pdf-D12424)](https://doi.org/10.1080/21681163.2022.2043778)
**LyNoS** was developed by SINTEF Medical Image Analysis to accelerate medical AI research.
</div>
## [Brief intro](https://github.com/raidionics/LyNoS#brief-intro)
This repository contains the LyNoS dataset described in ["_Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding_"](https://doi.org/10.1080/21681163.2022.2043778).
The dataset has now also been uploaded to Zenodo and the Hugging Face Hub enabling users to more easily access the data through Python API.
We have also developed a web demo to enable others to easily test the pretrained model presented in the paper. The application was developed using [Gradio](https://www.gradio.app) for the frontend and the segmentation is performed using the [Raidionics](https://raidionics.github.io/) backend.
## [Dataset](https://github.com/raidionics/LyNoS#data) <a href="https://colab.research.google.com/gist/andreped/274bf953771059fd9537877404369bed/lynos-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
### [Accessing dataset](https://github.com/raidionics/LyNoS#accessing-dataset)
The dataset contains 15 CTs with corresponding lymph nodes, azygos, esophagus, and subclavian carotid arteries. The folder structure is described below.
The easiest way to access the data is through Python with Hugging Face's [datasets](https://pypi.org/project/datasets/) package:
```
from datasets import load_dataset
# downloads data from Zenodo through the Hugging Face hub
# - might take several minutes (~5 minutes in CoLab)
dataset = load_dataset("andreped/LyNoS")
print(dataset)
# list paths of all available patients and corresponding features (ct/lymphnodes/azygos/brachiocephalicveins/esophagus/subclaviancarotidarteries)
for d in dataset["test"]:
print(d)
```
A detailed interactive demo on how to load and work with the data can be seen on CoLab. Click the CoLab badge <a href="https://colab.research.google.com/gist/andreped/6070d1d2914a9ce5847d4b3e687188b7/aeropath-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> to see the notebook or alternatively click [here](https://github.com/raidionics/AeroPath/blob/main/notebooks/aeropath-load-dataset-example.ipynb) to see it on GitHub.
### [Dataset structure](https://github.com/raidionics/LyNoS#dataset-structure)
```
└── AeroPath.zip
β”œβ”€β”€ stations_sto.csv
└── AeroPath/
β”œβ”€β”€ Pat1/
β”‚ β”œβ”€β”€ pat1_data.nii.gz
β”‚ β”œβ”€β”€ pat1_labels_Azygos.nii.gz
β”‚ β”œβ”€β”€ pat1_labels_Esophagus.nii.gz
β”‚ β”œβ”€β”€ pat1_labels_LymphNodes.nii.gz
β”‚ └── pat1_labels_SubCarArt.nii.gz
β”œβ”€β”€ [...]
└── Pat15/
β”œβ”€β”€ pat15_data.nii.gz
β”œβ”€β”€ pat15_labels_Azygos.nii.gz
β”œβ”€β”€ pat15_labels_Esophagus.nii.gz
β”œβ”€β”€ pat15_labels_LymphNodes.nii.gz
└── pat15_labels_SubCarArt.nii.gz
```
## [Demo](https://github.com/raidionics/LyNoS#demo) <a target="_blank" href="https://huggingface.co/spaces/andreped/LyNoS"><img src="https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Spaces-yellow.svg"></a>
To access the live demo, click on the `Hugging Face` badge above. Below is a snapshot of the current state of the demo app.
<img width="1400" alt="Screenshot 2023-11-09 at 20 53 29" src="https://github.com/raidionics/LyNoS/assets/29090665/ce661da0-d172-4481-b9b5-8b3e29a9fc1f">
## [Continuous integration](https://github.com/raidionics/LyNoS#continuous-integration)
| Build Type | Status |
| - | - |
| **HF Deploy** | [![Deploy](https://github.com/raidionics/LyNoS/workflows/Deploy/badge.svg)](https://github.com/raidionics/LyNoS/actions) |
| **File size check** | [![Filesize](https://github.com/raidionics/LyNoS/workflows/Check%20file%20size/badge.svg)](https://github.com/raidionics/LyNoS/actions) |
| **Formatting check** | [![Filesize](https://github.com/raidionics/LyNoS/workflows/Linting/badge.svg)](https://github.com/raidionics/LyNoS/actions) |
## [Development](https://github.com/raidionics/LyNoS#development)
### [Docker](https://github.com/raidionics/LyNoS#docker)
Alternatively, you can deploy the software locally. Note that this is only relevant for development purposes. Simply dockerize the app and run it:
```
docker build -t LyNoS .
docker run -it -p 7860:7860 LyNoS
```
Then open `http://127.0.0.1:7860` in your favourite internet browser to view the demo.
### [Python](https://github.com/raidionics/LyNoS#python)
It is also possible to run the app locally without Docker. Just setup a virtual environment and run the app.
Note that the current working directory would need to be adjusted based on where `LyNoS` is located on disk.
```
git clone https://github.com/raidionics/LyNoS.git
cd LyNoS/
virtualenv -python3 venv --clear
source venv/bin/activate
pip install -r ./demo/requirements.txt
python demo/app.py --cwd ./
```
## [Citation](https://github.com/raidionics/LyNoS#citation)
If you found the dataset and/or web application relevant in your research, please cite the following reference:
```
@article{bouget2021mediastinal,
author = {David Bouget and AndrΓ© Pedersen and Johanna Vanel and Haakon O. Leira and Thomas LangΓΈ},
title = {Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding},
journal = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization},
volume = {0},
number = {0},
pages = {1-15},
year = {2022},
publisher = {Taylor & Francis},
doi = {10.1080/21681163.2022.2043778},
URL = {https://doi.org/10.1080/21681163.2022.2043778},
eprint = {https://doi.org/10.1080/21681163.2022.2043778}
}
```
## [License](https://github.com/raidionics/LyNoS#license)
The code in this repository is released under [MIT license](https://github.com/raidionics/LyNoS/blob/main/LICENSE.md).