File size: 6,522 Bytes
ca25718
dd8f929
ca25718
dd8f929
 
 
 
 
 
 
 
 
ca25718
 
 
 
 
 
dd8f929
ca25718
 
 
 
 
 
 
 
dd8f929
ca25718
 
 
 
 
 
 
 
 
 
27a9419
ca25718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a9419
ca25718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a9419
94f8ab2
ca25718
 
 
 
94f8ab2
 
ca25718
 
94f8ab2
 
 
ca25718
 
 
 
 
 
94f8ab2
 
ca25718
 
 
94f8ab2
 
ca25718
 
 
 
94f8ab2
ca25718
 
 
 
94f8ab2
dd8f929
 
 
27a9419
dd8f929
 
27a9419
ca25718
 
27a9419
 
ca25718
dd8f929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f8ab2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import logging
from typing import Any, Optional
import torch
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    EulerDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    LCMScheduler,
    Transformer2DModel,
    UNet2DConditionModel,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from models.RewardPixart import RewardPixartPipeline, freeze_params
from models.RewardStableDiffusion import RewardStableDiffusion
from models.RewardStableDiffusionXL import RewardStableDiffusionXL
from models.RewardFlux import RewardFluxPipeline


def get_model(
    model_name: str,
    dtype: torch.dtype,
    device: torch.device,
    cache_dir: str,
    memsave: bool = False,
    enable_sequential_cpu_offload: bool = False,
):
    logging.info(f"Loading model: {model_name}")
    if model_name == "sd-turbo":
        pipe = RewardStableDiffusion.from_pretrained(
            "stabilityai/sd-turbo",
            torch_dtype=dtype,
            variant="fp16",
            cache_dir=cache_dir,
            memsave=memsave,
        )
        #pipe = pipe.to(device, dtype)
    elif model_name == "sdxl-turbo":
        vae = AutoencoderKL.from_pretrained(
            "madebyollin/sdxl-vae-fp16-fix",
            torch_dtype=torch.float16,
            cache_dir=cache_dir,
        )
        pipe = RewardStableDiffusionXL.from_pretrained(
            "stabilityai/sdxl-turbo",
            vae=vae,
            torch_dtype=dtype,
            variant="fp16",
            use_safetensors=True,
            cache_dir=cache_dir,
            memsave=memsave,
        )
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
            pipe.scheduler.config, timestep_spacing="trailing"
        )
        #pipe = pipe.to(device, dtype)
    elif model_name == "pixart":
        pipe = RewardPixartPipeline.from_pretrained(
            "PixArt-alpha/PixArt-XL-2-1024-MS",
            torch_dtype=dtype,
            cache_dir=cache_dir,
            memsave=memsave,
        )
        pipe.transformer = Transformer2DModel.from_pretrained(
            "PixArt-alpha/PixArt-Alpha-DMD-XL-2-512x512",
            subfolder="transformer",
            torch_dtype=dtype,
            cache_dir=cache_dir,
        )
        pipe.scheduler = DDPMScheduler.from_pretrained(
            "PixArt-alpha/PixArt-Alpha-DMD-XL-2-512x512",
            subfolder="scheduler",
            cache_dir=cache_dir,
        )

        # speed-up T5
        pipe.text_encoder.to_bettertransformer()
        pipe.transformer.eval()
        freeze_params(pipe.transformer.parameters())
        pipe.transformer.enable_gradient_checkpointing()
        #pipe = pipe.to(device)
    
    elif model_name == "hyper-sd":
        base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
        repo_name = "ByteDance/Hyper-SD"
        ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
    
        # Load model but don't specify device or dtype (defaults to CPU and float32)
        unet = UNet2DConditionModel.from_config(
            base_model_id, subfolder="unet", cache_dir=cache_dir
        )
    
        # Load state dict into unet (stays on CPU by default)
        unet.load_state_dict(
            load_file(
                hf_hub_download(repo_name, ckpt_name, cache_dir=cache_dir),
                device="cuda",
            )
        )
    
        # Initialize the pipeline (it will stay on CPU initially, using default dtype)
        pipe = RewardStableDiffusionXL.from_pretrained(
            base_model_id,
            unet=unet,
            torch_dtype=torch.float16,
            variant="fp16",  # Still set fp16 for later use on GPU
            cache_dir=cache_dir,
            is_hyper=True,
            memsave=memsave,
        )

        # Use LCM scheduler instead of ddim scheduler to support specific timestep number inputs
        pipe.scheduler = LCMScheduler.from_config(
            pipe.scheduler.config, cache_dir=cache_dir
        )

    elif model_name == "flux":
        pipe = RewardFluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-schnell",
            torch_dtype=torch.float16,
            cache_dir=cache_dir,
        )
        #pipe.to(device, dtype)
    else:
        raise ValueError(f"Unknown model name: {model_name}")
    #if enable_sequential_cpu_offload:
    #    pipe.enable_sequential_cpu_offload()
    return pipe


def get_multi_apply_fn(
    model_type: str,
    seed: int,
    pipe: Optional[Any] = None,
    cache_dir: Optional[str] = None,
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
):
    generator = torch.Generator("cuda").manual_seed(seed)
    if model_type == "flux":
        return lambda latents, prompt: torch.no_grad(pipe.apply)(
            latents=latents,
            prompt=prompt,
            num_inference_steps=4,
            generator=generator,
        )
    elif model_type == "sdxl":
        vae = AutoencoderKL.from_pretrained(
            "madebyollin/sdxl-vae-fp16-fix",
            torch_dtype=torch.float16,
            cache_dir=cache_dir,
        )
        pipe = RewardStableDiffusionXL.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0",
            torch_dtype=torch.float16,
            variant="fp16",
            vae=vae,
            use_safetensors=True,
            cache_dir=cache_dir,
        )
        pipe = pipe.to(device, dtype)
        pipe.enable_sequential_cpu_offload()
        return lambda latents, prompt: torch.no_grad(pipe.apply)(
            latents=latents,
            prompt=prompt,
            guidance_scale=5.0,
            num_inference_steps=50,
            generator=generator,
        )
    elif model_type == "sd2":
        sd2_base = "stabilityai/stable-diffusion-2-1-base"
        scheduler = EulerDiscreteScheduler.from_pretrained(
            sd2_base,
            subfolder="scheduler",
            cache_dir=cache_dir,
        )
        pipe = RewardStableDiffusion.from_pretrained(
            sd2_base,
            torch_dtype=dtype,
            cache_dir=cache_dir,
            scheduler=scheduler,
        )
        pipe = pipe.to(device, dtype)
        pipe.enable_sequential_cpu_offload()
        return lambda latents, prompt: torch.no_grad(pipe.apply)(
            latents=latents,
            prompt=prompt,
            guidance_scale=7.5,
            num_inference_steps=50,
            generator=generator,
        )
    else:
        raise ValueError(f"Unknown model type: {model_type}")