Spaces:
Sleeping
Sleeping
File size: 6,370 Bytes
ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 dd8f929 ca25718 27a9419 ca25718 27a9419 ca25718 27a9419 ca25718 27a9419 ca25718 dd8f929 27a9419 dd8f929 27a9419 ca25718 27a9419 ca25718 dd8f929 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import logging
from typing import Any, Optional
import torch
from diffusers import (
AutoencoderKL,
DDPMScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
LCMScheduler,
Transformer2DModel,
UNet2DConditionModel,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from models.RewardPixart import RewardPixartPipeline, freeze_params
from models.RewardStableDiffusion import RewardStableDiffusion
from models.RewardStableDiffusionXL import RewardStableDiffusionXL
from models.RewardFlux import RewardFluxPipeline
def get_model(
model_name: str,
dtype: torch.dtype,
device: torch.device,
cache_dir: str,
memsave: bool = False,
enable_sequential_cpu_offload: bool = False,
):
logging.info(f"Loading model: {model_name}")
if model_name == "sd-turbo":
pipe = RewardStableDiffusion.from_pretrained(
"stabilityai/sd-turbo",
torch_dtype=dtype,
variant="fp16",
cache_dir=cache_dir,
memsave=memsave,
)
#pipe = pipe.to(device, dtype)
elif model_name == "sdxl-turbo":
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
cache_dir=cache_dir,
)
pipe = RewardStableDiffusionXL.from_pretrained(
"stabilityai/sdxl-turbo",
vae=vae,
torch_dtype=dtype,
variant="fp16",
use_safetensors=True,
cache_dir=cache_dir,
memsave=memsave,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing"
)
#pipe = pipe.to(device, dtype)
elif model_name == "pixart":
pipe = RewardPixartPipeline.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
torch_dtype=dtype,
cache_dir=cache_dir,
memsave=memsave,
)
pipe.transformer = Transformer2DModel.from_pretrained(
"PixArt-alpha/PixArt-Alpha-DMD-XL-2-512x512",
subfolder="transformer",
torch_dtype=dtype,
cache_dir=cache_dir,
)
pipe.scheduler = DDPMScheduler.from_pretrained(
"PixArt-alpha/PixArt-Alpha-DMD-XL-2-512x512",
subfolder="scheduler",
cache_dir=cache_dir,
)
# speed-up T5
pipe.text_encoder.to_bettertransformer()
pipe.transformer.eval()
freeze_params(pipe.transformer.parameters())
pipe.transformer.enable_gradient_checkpointing()
#pipe = pipe.to(device)
elif model_name == "hyper-sd":
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "ByteDance/Hyper-SD"
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
# Load model.
unet = UNet2DConditionModel.from_config(
base_model_id, subfolder="unet", cache_dir=cache_dir
).to(device, dtype)
unet.load_state_dict(
load_file(
hf_hub_download(repo_name, ckpt_name, cache_dir=cache_dir),
device="cuda",
)
)
pipe = RewardStableDiffusionXL.from_pretrained(
base_model_id,
unet=unet,
torch_dtype=dtype,
variant="fp16",
cache_dir=cache_dir,
is_hyper=True,
memsave=memsave,
)
# Use LCM scheduler instead of ddim scheduler to support specific timestep number inputs
pipe.scheduler = LCMScheduler.from_config(
pipe.scheduler.config, cache_dir=cache_dir
)
#pipe = pipe.to(device, dtype)
# upcast vae
pipe.vae = pipe.vae.to(dtype=torch.float32)
elif model_name == "flux":
pipe = RewardFluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=torch.float16,
cache_dir=cache_dir,
)
#pipe.to(device, dtype)
else:
raise ValueError(f"Unknown model name: {model_name}")
#if enable_sequential_cpu_offload:
# pipe.enable_sequential_cpu_offload()
return pipe
def get_multi_apply_fn(
model_type: str,
seed: int,
pipe: Optional[Any] = None,
cache_dir: Optional[str] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
generator = torch.Generator("cuda").manual_seed(seed)
if model_type == "flux":
return lambda latents, prompt: torch.no_grad(pipe.apply)(
latents=latents,
prompt=prompt,
num_inference_steps=4,
generator=generator,
)
elif model_type == "sdxl":
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
cache_dir=cache_dir,
)
pipe = RewardStableDiffusionXL.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
vae=vae,
use_safetensors=True,
cache_dir=cache_dir,
)
pipe = pipe.to(device, dtype)
pipe.enable_sequential_cpu_offload()
return lambda latents, prompt: torch.no_grad(pipe.apply)(
latents=latents,
prompt=prompt,
guidance_scale=5.0,
num_inference_steps=50,
generator=generator,
)
elif model_type == "sd2":
sd2_base = "stabilityai/stable-diffusion-2-1-base"
scheduler = EulerDiscreteScheduler.from_pretrained(
sd2_base,
subfolder="scheduler",
cache_dir=cache_dir,
)
pipe = RewardStableDiffusion.from_pretrained(
sd2_base,
torch_dtype=dtype,
cache_dir=cache_dir,
scheduler=scheduler,
)
pipe = pipe.to(device, dtype)
pipe.enable_sequential_cpu_offload()
return lambda latents, prompt: torch.no_grad(pipe.apply)(
latents=latents,
prompt=prompt,
guidance_scale=7.5,
num_inference_steps=50,
generator=generator,
)
else:
raise ValueError(f"Unknown model type: {model_type}") |