Spaces:
Running
Running
File size: 39,484 Bytes
545659d 82e8e66 545659d 123829d 545659d 98ce923 545659d 722a74e 545659d a0e06d8 6925966 cabfe86 545659d f6913f3 f80dbe2 c400da7 ec6e24b 2868f8e f80dbe2 ac2a5c7 6925966 ac2a5c7 52145da 6925966 f6913f3 545659d 10b0245 123829d 10b0245 123829d 2f95367 3f4959e 3bf2d11 2abae72 0c01bdf 5e79f53 545659d 98ce923 545659d 123829d 0501944 545659d cbdb616 545659d dfe56e1 545659d 645ddd1 4696931 545659d f4cc18c fdbb8b2 545659d fdbb8b2 545659d fdbb8b2 545659d fdbb8b2 f6913f3 ac2a5c7 545659d ac2a5c7 016503f 545659d 096998b 545659d 82e8e66 98ce923 545659d f28cd01 e3d2855 4be74db 58be8ed 764046f 58be8ed 545659d fdbb8b2 545659d 8f7fb40 7c00bd8 047eeea ceec5fa 047eeea f6913f3 4be74db 545659d fdbb8b2 f6913f3 55cb886 2f0b977 432443b f1855ec 722a74e ec0082a 722a74e 9d7a705 722a74e 7139a06 722a74e 010a3dc 722a74e f0fccf1 8ee9d42 aa63800 8ee9d42 394988b ec0082a 3b5d5e3 ec0082a 394988b 7cca730 8ee9d42 f6ef0c9 9352299 722a74e 893bff0 2e36d14 893bff0 e673b34 3d0dbc5 2868f8e cc4061c b60e99e 83c5a54 b60e99e 83c5a54 b60e99e ea2584d cc4061c ec0082a cc4061c 2240766 cc4061c 2240766 cc4061c 2240766 cc4061c 2240766 cc4061c 2240766 a0e06d8 722a74e 77b4467 722a74e 564b181 a0e06d8 722a74e 7c00bd8 3dbec8a a510b3e 7c00bd8 ea2584d 3dbec8a 7c00bd8 3dbec8a ea2584d 3dbec8a ea2584d 7c00bd8 3dbec8a 7c00bd8 ca79504 545659d ed652cd fdc333a 0267daf 2f0b977 c400da7 09f2f01 683d0ff e45f457 8722746 f1855ec 0267daf bfb2083 ed652cd 545659d 5e79f53 545659d dddfbb8 a70a18d 545659d 5e79f53 545659d 7c8f6b4 545659d c3b945b ed652cd f7824e3 5a7c81b bfb2083 432443b c3b945b be68ce1 6925966 2ea14e3 7b864fb e0cd9be 1d0244a 9730921 7c8f6b4 9730921 65a7485 d78ecb0 e7dfbcf d78ecb0 9730921 d78ecb0 6c52b98 1d0244a 7b864fb 6c76b19 d78ecb0 9270d86 d78ecb0 6c76b19 feaa805 6c76b19 9730921 1d0244a 04a4806 1d0244a bc44871 a510b3e d78ecb0 9730921 d72f154 7c8f6b4 6c52b98 7c8f6b4 bb56c78 e0cd9be 4248460 e0cd9be f70e270 e0cd9be 7b864fb e0cd9be 84d1dc0 1880eb2 42d57dc 1880eb2 8e3e24b 1880eb2 42d57dc 8e3e24b 1880eb2 0660cb3 1880eb2 0660cb3 1880eb2 11e9611 2ea14e3 b5942fe 00c313f 7afa34d b2c79c0 a756ea6 b2c79c0 ada96e4 b2c79c0 ada96e4 b2c79c0 ada96e4 b2c79c0 ada96e4 b2c79c0 ada96e4 b2c79c0 ada96e4 b2c79c0 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 7afa34d b2c79c0 ebb3c24 bfb2083 b2c79c0 ebb3c24 ada96e4 b2c79c0 ebb3c24 ada96e4 b2c79c0 ebb3c24 ada96e4 b2c79c0 ebb3c24 ada96e4 b2c79c0 ebb3c24 ada96e4 b2c79c0 a756ea6 7afa34d b2c79c0 7afa34d 2ea14e3 00c313f 26f32f4 822a192 26f32f4 96a5963 822a192 d1f1ca8 f1855ec d1f1ca8 11e9611 f9b1af2 3d0dbc5 f9b1af2 d766a5d 3d0dbc5 f9b1af2 66ab5da d010386 66ab5da f9b1af2 3d0dbc5 586cf48 d766a5d f9b1af2 ad73ab4 3d0dbc5 2b9e0bc 16a64c6 2b9e0bc 16a64c6 96a5963 16a64c6 0ef3ae5 16a64c6 96a5963 16a64c6 2b9e0bc f9b1af2 96ee80f c900035 f9b1af2 c900035 659dc3a 96ee80f 659dc3a f9b1af2 659dc3a 96ee80f 201037e bb61f71 f9b1af2 bb61f71 3bb651f 94a6927 ba45271 369cda2 d766a5d 7ac500f d766a5d 7ac500f a88f03a 3bb651f a547f8e c596c24 29a6d28 9af81d7 c3b945b d5d810a ec6e24b df7ff25 13d584d df7ff25 59f0d02 cabfe86 cd2fa70 13d584d 59f0d02 cabfe86 cd2fa70 13d584d ec6e24b 59f0d02 545659d 3dbec8a 545659d fed911d 545659d f1855ec e673b34 545659d d694431 545659d d5d810a 3bf2cbc f1855ec 545659d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
import gradio as gr
import cv2
from PIL import Image
import numpy as np
from transformers import pipeline
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
import trimesh
from geometry import create_triangles
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile
import json
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from moviepy.editor import *
frame_selected = 0
masks = []
locations = []
mesh = []
def zip_files(files_in, files_out):
with ZipFile("depth_result.zip", "w") as zipObj:
for idx, file in enumerate(files_in):
zipObj.write(file, file.split("/")[-1])
for idx, file in enumerate(files_out):
zipObj.write(file, file.split("/")[-1])
return "depth_result.zip"
def create_video(frames, fps, type):
print("building video result")
clip = ImageSequenceClip(frames, fps=fps)
clip.write_videofile(type + "_result.mp4", fps=fps)
return type + "_result.mp4"
@torch.no_grad()
def predict_depth(model, image):
return model(image)["depth"]
@spaces.GPU
def make_video(video_path, outdir='./vis_video_depth', encoder='vits'):
if encoder not in ["vitl","vitb","vits"]:
encoder = "vits"
mapper = {"vits":"small","vitb":"base","vitl":"large"}
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
# Define path for temporary processed frames
temp_frame_dir = tempfile.mkdtemp()
margin_width = 50
to_tensor_transform = transforms.ToTensor()
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
# total_params = sum(param.numel() for param in depth_anything.parameters())
# print('Total parameters: {:.2f}M'.format(total_params / 1e6))
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
if os.path.isfile(video_path):
if video_path.endswith('txt'):
with open(video_path, 'r') as f:
lines = f.read().splitlines()
else:
filenames = [video_path]
else:
filenames = os.listdir(video_path)
filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
filenames.sort()
# os.makedirs(outdir, exist_ok=True)
for k, filename in enumerate(filenames):
file_size = os.path.getsize(filename)/1024/1024
if file_size > 128.0:
print(f'File size of {filename} larger than 128Mb, sorry!')
return filename
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
raw_video = cv2.VideoCapture(filename)
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
if frame_rate < 1:
frame_rate = 1
cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
print(f'frames: {cframes}, fps: {frame_rate}')
# output_width = frame_width * 2 + margin_width
#filename = os.path.basename(filename)
# output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
#with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
# output_path = tmpfile.name
#out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
#fourcc = cv2.VideoWriter_fourcc(*'mp4v')
#out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
count=0
depth_frames = []
orig_frames = []
while raw_video.isOpened():
ret, raw_frame = raw_video.read()
if not ret:
break
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
frame = transform({'image': frame})['image']
frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)
depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR)
# Remove white border around map:
# define lower and upper limits of white
white_lo = np.array([250,250,250])
white_hi = np.array([255,255,255])
# mask image to only select white
mask = cv2.inRange(depth_color, white_lo, white_hi)
# change image to black where we found white
depth_color[mask>0] = (0,0,0)
# split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
# combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
# out.write(combined_frame)
# frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
# cv2.imwrite(frame_path, combined_frame)
cv2.imwrite(f"f{count}.jpg", raw_frame)
orig_frames.append(f"f{count}.jpg")
cv2.imwrite(f"f{count}_dmap.jpg", depth_color)
depth_frames.append(f"f{count}_dmap.jpg")
count += 1
final_vid = create_video(depth_frames, frame_rate, "depth")
final_zip = zip_files(orig_frames, depth_frames)
raw_video.release()
# out.release()
cv2.destroyAllWindows()
global frame_selected
global masks
masks = orig_frames
return final_vid, final_zip, np.concatenate((orig_frames, depth_frames), axis=0), masks[frame_selected] #output_path
def depth_edges_mask(depth):
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
mask = depth_grad > 0.05
return mask
def pano_depth_to_world_points(depth):
"""
360 depth to world points
given 2D depth is an equirectangular projection of a spherical image
Treat depth as radius
longitude : -pi to pi
latitude : -pi/2 to pi/2
"""
# Convert depth to radius
radius = (255 - depth.flatten())
lon = np.linspace(0, np.pi*2, depth.shape[1])
lat = np.linspace(0, np.pi, depth.shape[0])
lon, lat = np.meshgrid(lon, lat)
lon = lon.flatten()
lat = lat.flatten()
pts3d = [[0,0,0]]
uv = [[0,0]]
for i in range(0, 1): #(0,2)
for j in range(0, 1): #(0,2)
#rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
#rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
d_lat = lat + j/2 * np.pi / depth.shape[0]
# Convert to cartesian coordinates
x = radius * np.cos(d_lon) * np.sin(d_lat)
y = radius * np.cos(d_lat)
z = radius * np.sin(d_lon) * np.sin(d_lat)
pts = np.stack([x, y, z], axis=1)
uvs = np.stack([lon, lat], axis=1)
pts3d = np.concatenate((pts3d, pts), axis=0)
uv = np.concatenate((uv, uvs), axis=0)
#print(f'i: {i}, j: {j}')
j = j+1
i = i+1
return [pts3d, uv]
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])
def get_mesh(image, blur_data, loadall):
global locations
global mesh
if loadall == False:
mesh = []
fnum = frame_selected
if fnum < len(image)/2:
blur_img = blur_image(image[fnum][0], image[fnum+int(len(image)/2)][0], blur_data)
gdepth = rgb2gray(image[fnum+int(len(image)/2)][0])
else:
blur_img = blur_image(image[fnum-int(len(image)/2)][0], image[fnum][0], blur_data)
gdepth = rgb2gray(image[fnum][0])
print('depth to gray - ok')
points = pano_depth_to_world_points(gdepth)
pts3d = points[0]
uv = points[1]
print('radius from depth - ok')
# Create a trimesh mesh from the points
# Each pixel is connected to its 4 neighbors
# colors are the RGB values of the image
verts = pts3d.reshape(-1, 3)
#triangles = create_triangles(image.shape[0], image.shape[1])
#print('triangles - ok')
rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA)
colors = rgba.reshape(-1, 4)
clrs = [[128, 128, 128, 0]]
for i in range(0,1): #(0,4)
clrs = np.concatenate((clrs, colors), axis=0)
i = i+1
#mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
mesh.append(trimesh.PointCloud(verts, colors=clrs))
#material = trimesh.visual.texture.SimpleMaterial(image=image)
#texture = trimesh.visual.TextureVisuals(uv=uv, image=image, material=material)
#mesh.visual = texture
scene = trimesh.Scene(mesh)
print('mesh - ok')
# Save as glb
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
glb_path = glb_file.name
scene.export(glb_path)
print('file - ok')
return glb_path
def blur_image(image, depth, blur_data):
blur_a = blur_data.split()
print(f'blur data {blur_data}')
blur_frame = image.copy()
j = 0
while j < 256:
i = 255 - j
blur_lo = np.array([i,i,i])
blur_hi = np.array([i+1,i+1,i+1])
blur_mask = cv2.inRange(depth, blur_lo, blur_hi)
print(f'kernel size {int(blur_a[j])}')
blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0)
blur_frame[blur_mask>0] = blur[blur_mask>0]
j = j + 1
return blur_frame
def loadurl(url):
return url
def select_frame(v, evt: gr.SelectData):
global frame_selected
global masks
masks[frame_selected] = v
if evt.index != frame_selected:
frame_selected = evt.index
v = masks[frame_selected]
#print(v)
return v, frame_selected
def align_rows(evt: gr.EventData):
global masks
return gr.Gallery(columns=int(len(masks)))
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
title = "# Depth Anything Video Demo"
description = """Depth Anything on full video files.
Please refer to our [paper](https://arxiv.org/abs/2401.10891), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details.
Mesh rendering from [ZoeDepth](https://huggingface.co/spaces/shariqfarooq/ZoeDepth) ([github](https://github.com/isl-org/ZoeDepth/tree/main/ui))."""
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
# @torch.no_grad()
# def predict_depth(model, image):
# return model(image)
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Video Depth Prediction demo")
with gr.Row():
with gr.Column():
input_url = gr.Textbox(value="./examples/streetview.mp4", label="URL")
input_video = gr.Video(label="Input Video", format="mp4")
input_url.change(fn=loadurl, inputs=[input_url], outputs=[input_video])
output_frame = gr.Gallery(label="Frames", type='numpy', preview=True, columns=6)
output_frame.change(fn=align_rows, inputs=None, outputs=[output_frame])
output_mask = gr.ImageEditor(interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(colors=['black', 'darkgray', 'gray', 'lightgray', 'white']), layers=True)
submit = gr.Button("Submit")
with gr.Column():
model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl")], type="value", value="vits", label='Model Type')
processed_video = gr.Video(label="Output Video", format="mp4")
processed_zip = gr.File(label="Output Archive")
result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0], interactive=True, elem_id="model3D")
svg_in = gr.HTML(value="""<svg id='svg_in' height='32' width='256' viewBox='0 0 256 32' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' style='touch-action:none;background-color:#808080;' onpointerdown='
try{
if (document.getElementById(\"pl\").getAttribute(\"points\").length < 256) {
var pts = \"\";
for (var i=0; i<256; i++) {
pts += i+\",0 \";
}
document.getElementById(\"pl\").setAttribute(\"points\", pts.slice(0,-1));
var xold = 0;
var yold = 0;
var x = 0;
var y = 0;
function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; }
this.onpointermove = function(event) {
if (this.title != \"\") {
x = parseInt(event.clientX - this.getBoundingClientRect().x);
y = parseInt(event.clientY - this.getBoundingClientRect().y);
if (x < 0) { x = 0; } else if (x > 255) { x = 255; }
if (y < 0) { y = 0; } else if (y > 31) { y = 31; }
var pl_a = document.getElementById(\"pl\").getAttribute(\"points\").split(\" \");
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
pl_a[i] = x+\",\"+parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
}
pl_a[x] = x+\",\"+y;
xold = x;
yold = y;
document.getElementById(\"pl\").setAttribute(\"points\", pl_a.join(\" \"));
}
}
this.onpointerup = function(event) {
var pl_a = document.getElementById(\"pl\").getAttribute(\"points\").replace(/\d+,/g, \"\").split(\" \");
for (var i=0; i<pl_a.length; i++) {
pl_a[i] = parseInt(pl_a[i]) * 2 + 1;
}
document.getElementsByTagName(\"textarea\")[1].value = pl_a.join(\" \");
var evt = document.createEvent(\"Event\");
evt.initEvent(\"input\", true, false);
document.getElementsByTagName(\"textarea\")[1].dispatchEvent(evt);
this.title = \"\";
}
this.onpointerleave = function(event) {
this.title = \"\";
}
this.onpointerdown = function(event) {
xold = parseInt(event.clientX - this.getBoundingClientRect().x);
yold = parseInt(event.clientY - this.getBoundingClientRect().y);
this.title = xold+\",\"+yold;
}
}
}catch(e){alert(e);}
'>
<defs>
<linearGradient id='lg' x1='0%' x2='100%' y1='0%' y2='0%'>
<stop offset='0%' stop-color='white'/>
<stop offset='100%' stop-color='black'/>
</linearGradient>
</defs>
<polyline id='pl' points='-3,0 0,15 255,15 258,0' stroke='url(#lg)' fill='none' stroke-width='3' stroke-linejoin='round'/>
</svg>""")
average = gr.HTML(value="""<label for='average'>Average</label><input id='average' type='range' style='width:256px;height:1em;' value='1' min='1' max='15' step='2' onclick='
var pts_a = document.getElementsByTagName(\"textarea\")[1].value.split(\" \");
for (var i=0; i<256; i++) {
var avg = 0;
var div = this.value;
for (var j = i-parseInt(this.value/2); j <= i+parseInt(this.value/2); j++) {
if (pts_a[j]) {
avg += parseInt(pts_a[j]);
} else {
div--;
}
}
pts_a[i] = parseInt((avg / div - 1) / 2) * 2 + 1;
}
document.getElementsByTagName(\"textarea\")[1].value = pts_a.join(\" \");
for (var i=0; i<pts_a.length; i++) {
pts_a[i] = i+\",\"+parseInt((pts_a[i] - 1) / 2);
}
document.getElementById(\"pl\").setAttribute(\"points\", pts_a.join(\" \"));
var evt = document.createEvent(\"Event\");
evt.initEvent(\"input\", true, false);
document.getElementsByTagName(\"textarea\")[1].dispatchEvent(evt);
' oninput='
this.parentNode.childNodes[2].innerText = this.value;
'/><span>1</span>""")
with gr.Accordion(label="Blur levels", open=False):
blur_in = gr.Textbox(value="", label="Kernel size", show_label=False)
with gr.Accordion(label="Locations", open=False):
offset = gr.HTML(value="""<input type='text' id='kbrd' onkeydown='
if (BABYLON) {
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
event.preventDefault();
if (BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion) {
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion = null;
}
switch(event.key) {
case \"w\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y += 1;
this.value = \"w ⬆ x\";
break;
case \"x\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y -= 1;
this.value = \"w ⬇ x\";
break;
case \"a\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z -= 1;
this.value = \"a ⬅ d\";
break;
case \"d\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z += 1;
this.value = \"a ➡ d\";
break;
case \"e\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x -= 1;
this.value = \"z ↗ e\";
break;
case \"z\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x += 1;
this.value = \"z ↙ e\";
break;
case \"s\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z = 0;
this.value = \"\";
break;
case \"t\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z += Math.PI/256;
this.value = \"t 🔃 b\";
break;
case \"b\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z -= Math.PI/256;
this.value = \"t 🔃 b\";
break;
case \"f\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y -= Math.PI/256;
this.value = \"f 🔁 h\";
break;
case \"h\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y += Math.PI/256;
this.value = \"f 🔁 h\";
break;
case \"y\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x -= Math.PI/256;
this.value = \"v 🔄 y\";
break;
case \"v\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x += Math.PI/256;
this.value = \"v 🔄 y\";
break;
case \"g\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z = 0;
this.value = \"\";
break;
case \"i\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y *= 256/255;
this.value = \"i ↕ ,\";
break;
case \",\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y /= 256/255;
this.value = \"i ↕ ,\";
break;
case \"j\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z /= 256/255;
this.value = \"j ↔ l\";
break;
case \"l\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z *= 256/255;
this.value = \"j ↔ l\";
break;
case \"o\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x /= 256/255;
this.value = \"m ⤢ o\";
break;
case \"m\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x *= 256/255;
this.value = \"m ⤢ o\";
break;
case \"k\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x = 1;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y = 1;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z = 1;
this.value = \"\";
break;
default:
this.value = \"\";
}
}
' style='color:auto;background-color:transparent;border:1px solid lightgray;'/><pre id='keymap'>
` 1 2 3 4 5 6 7 8 9 0 - =
W E T Y I O { }
A-`S´-D F-`G´-H J-`K´-L ; '
Z´ X̀ V´ B̀ M´ `, . /
<a id='move' href='#'>move</a> <a id='rotate' href='#'>rotate</a> <a id='scale' href='#'>scale</a>
</pre>""")
selected = gr.Number(elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False)
output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected], show_progress='hidden')
example_coords = """[
{"latLng": { "lat": 50.07379596793083, "lng": 14.437146122950555 } },
{"latLng": { "lat": 50.073799567020004, "lng": 14.437146774240507 } },
{"latLng": { "lat": 50.07377647505558, "lng": 14.437161000659017 } },
{"latLng": { "lat": 50.07379496839027, "lng": 14.437148958238538 } },
{"latLng": { "lat": 50.073823157821664, "lng": 14.437124189538856 } }
]"""
coords = gr.JSON(elem_id="coords", value=example_coords, label="Precise coordinates", show_label=False)
html = gr.HTML(value="""<label for='zoom'>Zoom</label><input id='zoom' type='range' style='width:256px;height:1em;' value='0.8' min='0.157' max='1.57' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/this.value));
BABYLON.Engine.LastCreatedScene.activeCamera.fov = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.fov;
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
'/><span>0.8</span>""")
camera = gr.HTML(value="""<a href='#' id='reset_cam' onclick='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
screenshot: true,
pipeline: new BABYLON.DefaultRenderingPipeline(\"default\", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.radius = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value));
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById(\"zoom\").value;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = document.getElementById(\"contrast\").value;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = document.getElementById(\"exposure\").value;
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
try {
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager = new BABYLON.GizmoManager(BABYLON.Engine.LastCreatedScene, 12);
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = true;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.boundingBoxGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.usePointerToAttachGizmos = false;
document.getElementById(\"move\").onclick = function(event) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = true;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
}
document.getElementById(\"rotate\").onclick = function(event) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = true;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
}
document.getElementById(\"scale\").onclick = function(event) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = true;
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.attachToMesh(BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1]);
} catch(e) {alert(e)}
'>reset camera</a>""")
contrast = gr.HTML(value="""<label for='contrast'>Contrast</label><input id='contrast' type='range' style='width:256px;height:1em;' value='2.0' min='0' max='2' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast;
'/><span>2.0</span>""")
exposure = gr.HTML(value="""<label for='exposure'>Exposure</label><input id='exposure' type='range' style='width:256px;height:1em;' value='0.5' min='0' max='2' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure;
'/><span>0.5</span>""")
canvas = gr.HTML(value="""<a href='#' onclick='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = true;
BABYLON.Engine.LastCreatedScene.getEngine().onEndFrameObservable.add(function() {
if (BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot === true) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = false;
try {
BABYLON.Tools.CreateScreenshotUsingRenderTarget(BABYLON.Engine.LastCreatedScene.getEngine(), BABYLON.Engine.LastCreatedScene.activeCamera,
{ precision: 1.0 }, (durl) => {
var cnvs = document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0]; //.getContext(\"webgl2\");
var svgd = `<svg id=\"svg_out\" viewBox=\"0 0 ` + cnvs.width + ` ` + cnvs.height + `\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">
<defs>
<filter id=\"blur\" x=\"0\" y=\"0\" xmlns=\"http://www.w3.org/2000/svg\">
<feGaussianBlur in=\"SourceGraphic\" stdDeviation=\"` + BABYLON.Engine.LastCreatedScene.getNodes()[1].material.pointSize/2.0*Math.sqrt(2.0) + `\" />
</filter>
</defs>
<image filter=\"url(#blur)\" id=\"svg_img\" x=\"0\" y=\"0\" width=\"` + cnvs.width + `\" height=\"` + cnvs.height + `\" xlink:href=\"` + durl + `\"/>
</svg>`;
document.getElementById(\"cnv_out\").width = cnvs.width;
document.getElementById(\"cnv_out\").height = cnvs.height;
document.getElementById(\"img_out\").src = \"data:image/svg+xml;base64,\" + btoa(svgd);
}
);
} catch(e) { alert(e); }
// https://forum.babylonjs.com/t/best-way-to-save-to-jpeg-snapshots-of-scene/17663/11
}
});
'/>snapshot</a><br/><img src='' id='img_out' onload='
var ctxt = document.getElementById(\"cnv_out\").getContext(\"2d\");
ctxt.drawImage(this, 0, 0);
'/><br/>
<canvas id='cnv_out'/>""")
load_all = gr.Checkbox(label="Load all")
render = gr.Button("Render")
def on_submit(uploaded_video,model_type,coordinates):
global locations
locations = []
avg = [0, 0]
if not coordinates:
locations = json.loads(example_coords)
for k, location in enumerate(locations):
locations[k] = location["latLng"]
avg[0] = avg[0] + locations[k]["lat"]
avg[1] = avg[1] + locations[k]["lng"]
else:
locations = json.loads(coordinates)
for k, location in enumerate(locations):
locations[k] = location["location"]["latLng"]
avg[0] = avg[0] + locations[k]["lat"]
avg[1] = avg[1] + locations[k]["lng"]
avg[0] = avg[0] / len(locations)
avg[1] = avg[1] / len(locations)
for k, location in enumerate(locations):
locations[k]["lat"] = location["lat"] - avg[0]
locations[k]["lng"] = location["lng"] - avg[1]
print(locations)
# Process the video and get the path of the output video
output_video_path = make_video(uploaded_video,encoder=model_type)
return output_video_path + (locations,)
submit.click(on_submit, inputs=[input_video, model_type, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, coords])
render.click(partial(get_mesh), inputs=[output_frame, blur_in, load_all], outputs=[result])
example_files = os.listdir('examples')
example_files.sort()
example_files = [os.path.join('examples', filename) for filename in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=[processed_video, processed_zip, output_frame, output_mask, coords], fn=on_submit, cache_examples=True)
if __name__ == '__main__':
demo.queue().launch() |