Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation | |
import os | |
feature_extractor = SegformerFeatureExtractor.from_pretrained( | |
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024" | |
) | |
model = TFSegformerForSemanticSegmentation.from_pretrained( | |
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024" | |
) | |
def ade_palette(): | |
"""ADE20K palette that maps each class to RGB values.""" | |
return [ | |
[204, 87, 92], | |
[112, 185, 212], | |
[45, 189, 106], | |
[234, 123, 67], | |
[78, 56, 123], | |
[210, 32, 89], | |
[90, 180, 56], | |
[155, 102, 200], | |
[33, 147, 176], | |
[255, 183, 76], | |
[67, 123, 89], | |
[190, 60, 45], | |
[134, 112, 200], | |
[56, 45, 189], | |
[200, 56, 123], | |
[87, 92, 204], | |
[120, 56, 123], | |
[45, 78, 123], | |
[156, 200, 56] | |
] | |
labels_list = [] | |
with open(r'labels.txt', 'r') as fp: | |
for line in fp: | |
labels_list.append(line[:-1]) | |
colormap = np.asarray(ade_palette()) | |
def label_to_color_image(label): | |
if label.ndim != 2: | |
raise ValueError("Expect 2-D input label") | |
if np.max(label) >= len(colormap): | |
raise ValueError("label value too large.") | |
return colormap[label] | |
def sepia(input_text): | |
# Check if the input text is a valid file path | |
if not os.path.isfile(input_text): | |
return "Invalid file path. Please enter a valid image file path." | |
# Load the image using the input text (assumed to be a path to an image) | |
input_img = Image.open(input_text) | |
inputs = feature_extractor(images=input_img, return_tensors="tf") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
logits = tf.transpose(logits, [0, 2, 3, 1]) | |
logits = tf.image.resize( | |
logits, input_img.size[::-1] | |
) | |
seg = tf.math.argmax(logits, axis=-1)[0] | |
color_seg = np.zeros( | |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8 | |
) | |
for label, color in enumerate(colormap): | |
color_seg[seg.numpy() == label, :] = color | |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 | |
pred_img = pred_img.astype(np.uint8) | |
# Convert the image array to a Pillow (PIL) image | |
pred_img = Image.fromarray(pred_img) | |
return pred_img | |
# Define the Gradio interface | |
iface = gr.Interface(fn=sepia, inputs="image", outputs="image") | |
# Launch the Gradio app | |
iface.launch() | |