|
|
|
|
|
import streamlit as st |
|
|
|
import os |
|
|
|
from io import StringIO |
|
import base64 |
|
import json |
|
import pandas as pd |
|
|
|
pd.options.mode.chained_assignment = None |
|
|
|
import numpy as np |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
from filtering import LoadParameters, ModifyingDocuments, Filtering |
|
|
|
|
|
class Visualization: |
|
def __init__( |
|
self, |
|
path_instructions, |
|
path_data, |
|
lang, |
|
num_docs, |
|
num_docs_for_words, |
|
max_len_text_display, |
|
lang_dataset_id, |
|
path_fasttext_model, |
|
path_sentencepiece_model, |
|
path_kenlm_model, |
|
): |
|
self.path_instructions = path_instructions |
|
self.path_data = path_data |
|
self.lang = lang |
|
self.num_docs = num_docs |
|
self.num_docs_for_words = num_docs_for_words |
|
self.max_len_text_display = max_len_text_display |
|
|
|
self.lang_dataset_id = lang_dataset_id |
|
self.param = LoadParameters.load_parameters(lang_dataset_id) |
|
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id) |
|
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id) |
|
self.model_lang_id = LoadParameters.load_model_lang_id( |
|
lang_dataset_id, path_fasttext_model |
|
) |
|
self.sentencepiece_model = LoadParameters.load_sentencepiece_model( |
|
lang_dataset_id, path_sentencepiece_model |
|
) |
|
self.sentencepiece_model_tok = ( |
|
self.sentencepiece_model if self.param["tokenization"] else None |
|
) |
|
self.kenlm_model = LoadParameters.load_kenlm_model( |
|
lang_dataset_id, path_kenlm_model |
|
) |
|
|
|
def warning_preamble(self): |
|
st.markdown( |
|
"This demo can be a little slow, and only allows you to process up to 5000 documents " |
|
"for a decent speed. If you want to display up to three times more documents and have " |
|
"a faster visualization, we invite you to run this " |
|
"[code](https://github.com/bigscience-workshop/data_tooling/tree/master/ac_dc/visualization) " |
|
"on your computer." |
|
) |
|
|
|
def preamble(self): |
|
def get_binary_file_downloader_html(bin_file, file_label="File"): |
|
with open(bin_file, "rb") as f: |
|
data = f.read() |
|
bin_str = base64.b64encode(data).decode() |
|
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>' |
|
return href |
|
|
|
st.markdown( |
|
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail in this " |
|
+ get_binary_file_downloader_html( |
|
self.path_instructions, |
|
"pdf", |
|
) |
|
+ ".", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
def open_data(self): |
|
with open(self.path_data) as json_file: |
|
data = json.load(json_file) |
|
|
|
self.num_docs = min(self.num_docs, len(data)) |
|
self.num_docs_for_words = min(self.num_docs_for_words, len(data)) |
|
|
|
if "words" in data[0]: |
|
words = [doc["words"] for doc in data[: self.num_docs_for_words]] |
|
words = [word for doc in words for word in doc] |
|
self.words = pd.DataFrame(words) |
|
else: |
|
self.words = None |
|
|
|
docs = data[: self.num_docs] |
|
for doc in docs: |
|
if not (self.words is None): |
|
del doc["words"] |
|
if len(doc["text"]) > self.max_len_text_display: |
|
doc["text"] = ( |
|
doc["text"][: self.max_len_text_display] |
|
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]" |
|
) |
|
self.docs_checkpoint = pd.DataFrame(docs) |
|
self.docs = self.docs_checkpoint |
|
|
|
def set_title(self): |
|
st.title(f"Filtering visualization") |
|
|
|
@staticmethod |
|
def plot_hist(dataframe, key, num_bins=50): |
|
checkbox = st.checkbox( |
|
"Diplay distribution", value=True, key=f"display_distribution_{key[0]}" |
|
) |
|
if checkbox: |
|
fig, ax = plt.subplots() |
|
val = dataframe[key[0]].values |
|
if np.median(val) != 0: |
|
val = val[ |
|
abs(val - np.median(val)) |
|
< 9 * np.median(np.absolute(val - np.median(val))) |
|
] |
|
ax.hist(val, bins=num_bins, density=True) |
|
ax.set_title(" ".join(key[0].split("_"))) |
|
ax.axvline(x=key[1], color="r", linestyle="dashed") |
|
st.pyplot(fig) |
|
|
|
def filtering_of_docs(self): |
|
st.sidebar.subheader("Parameters of the filtering on documents") |
|
|
|
def set_sliders(): |
|
columns = list(self.docs) |
|
keys = [] |
|
conds = {} |
|
|
|
def get_cond(key, cutoff, max_cutoff): |
|
if max_cutoff: |
|
return self.docs[key] <= cutoff |
|
return self.docs[key] >= cutoff |
|
|
|
def print_discared_by_cond(cond): |
|
st.caption( |
|
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter." |
|
) |
|
|
|
if "number_words" in columns: |
|
with st.sidebar.expander("Number of words"): |
|
cutoff_def = "If the number of words of a document is lower than this number, the document is removed." |
|
max_nb_words = int(np.max(self.docs["number_words"])) + 1 |
|
cutoff_min_number_words = st.slider( |
|
cutoff_def, 0, min(max_nb_words, 500), 0 |
|
) |
|
new_key = ("number_words", cutoff_min_number_words, False) |
|
keys.append(new_key) |
|
Visualization.plot_hist(self.docs, new_key) |
|
cond_1 = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond_1) |
|
|
|
cutoff_def = "If the number of words of a document is higher than this number, the document is removed." |
|
cutoff_max_number_words = st.slider( |
|
cutoff_def, 0, max_nb_words, max_nb_words |
|
) |
|
new_key = ("number_words", cutoff_max_number_words, True) |
|
keys.append(new_key) |
|
cond_2 = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond_2) |
|
|
|
conds["number_words"] = [cond_1, cond_2] |
|
|
|
if "repetitions_ratio" in columns: |
|
with st.sidebar.expander("Repetitions ratio"): |
|
val_repetitions_lengths = list( |
|
self.docs["repetitions_ratio"].iloc[0].keys() |
|
) |
|
default_index = ( |
|
val_repetitions_lengths.index("10") |
|
if "10" in val_repetitions_lengths |
|
else 0 |
|
) |
|
label_selectbox = "Length of the repetitions (that will determine the repetitions ratio)." |
|
repetitions_length = st.selectbox( |
|
label=label_selectbox, |
|
options=val_repetitions_lengths, |
|
index=default_index, |
|
) |
|
st.caption( |
|
"Choosing a higher or lower number does not mean that the filtering " |
|
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) " |
|
"tends to associate a high repetitions ratio to very long documents (like book chapters), but with " |
|
"few or no repetitions, simply because their length gives them more diversity, and we do " |
|
"not want to discard such documents." |
|
) |
|
self.docs["repetitions_ratio"] = self.docs_checkpoint[ |
|
"repetitions_ratio" |
|
] |
|
for i in range(len(self.docs["repetitions_ratio"])): |
|
self.docs["repetitions_ratio"].iloc[i] = self.docs[ |
|
"repetitions_ratio" |
|
].iloc[i][repetitions_length] |
|
|
|
cutoff_def = "If the repetitions ratio of a document is higher than this number, the document is removed." |
|
cutoff_repetitions_ratio = st.slider( |
|
cutoff_def, 0.0, 1.0, 1.0, step=0.01 |
|
) |
|
new_key = ( |
|
"repetitions_ratio", |
|
cutoff_repetitions_ratio, |
|
True, |
|
repetitions_length, |
|
) |
|
keys.append(new_key) |
|
Visualization.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["repetitions_ratio"] = [cond] |
|
|
|
if "special_characters_ratio" in columns: |
|
with st.sidebar.expander("Special characters ratio"): |
|
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed." |
|
cutoff_special_characters_ratio = st.slider( |
|
cutoff_def, 0.0, 1.0, 1.0, step=0.01 |
|
) |
|
new_key = ( |
|
"special_characters_ratio", |
|
cutoff_special_characters_ratio, |
|
True, |
|
) |
|
keys.append(new_key) |
|
Visualization.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["special_characters_ratio"] = [cond] |
|
|
|
if "stopwords_ratio" in columns: |
|
with st.sidebar.expander("Stop words ratio"): |
|
stopwords_file = st.file_uploader( |
|
"Upload your own list of stop words (one per line). If there is none, the default one is used." |
|
) |
|
if stopwords_file: |
|
new_stopwords = StringIO( |
|
stopwords_file.getvalue().decode("utf-8") |
|
).read() |
|
new_stopwords = set(new_stopwords.split("\n")) |
|
self.docs["stopwords_ratio"] = self.docs_checkpoint[ |
|
"stopwords_ratio" |
|
] |
|
for i in range(len(self.docs["stopwords_ratio"])): |
|
self.docs["stopwords_ratio"].iloc[ |
|
i |
|
] = Filtering.compute_stopwords_ratio( |
|
self.docs["text"].iloc[i], |
|
self.sentencepiece_model_tok, |
|
self.param["strip_characters"], |
|
self.param["cond_words_augmentation"], |
|
self.param["words_augmentation_group_sizes"], |
|
self.param["words_augmentation_join_char"], |
|
new_stopwords, |
|
) |
|
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed." |
|
cutoff_stopwords_ratio = st.slider( |
|
cutoff_def, 0.0, 1.0, 0.0, step=0.01 |
|
) |
|
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False) |
|
keys.append(new_key) |
|
Visualization.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["stopwords_ratio"] = [cond] |
|
|
|
if "flagged_words_ratio" in columns: |
|
with st.sidebar.expander("Flagged words ratio"): |
|
flagged_words_file = st.file_uploader( |
|
"Upload your own list of flagged words (one per line). If there is none, the default one is used." |
|
) |
|
if flagged_words_file: |
|
new_flagged_words = StringIO( |
|
flagged_words_file.getvalue().decode("utf-8") |
|
).read() |
|
new_flagged_words = set(new_flagged_words.split("\n")) |
|
self.docs["flagged_words_ratio"] = self.docs_checkpoint[ |
|
"flagged_words_ratio" |
|
] |
|
for i in range(len(self.docs["flagged_words_ratio"])): |
|
self.docs["flagged_words_ratio"].iloc[ |
|
i |
|
] = Filtering.compute_flagged_words_ratio( |
|
self.docs["text"].iloc[i], |
|
self.sentencepiece_model_tok, |
|
self.param["strip_characters"], |
|
self.param["cond_words_augmentation"], |
|
self.param["words_augmentation_group_sizes"], |
|
self.param["words_augmentation_join_char"], |
|
new_flagged_words, |
|
) |
|
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed." |
|
cutoff_flagged_words_ratio = st.slider( |
|
cutoff_def, 0.0, 1.0, 1.0, step=0.01 |
|
) |
|
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True) |
|
keys.append(new_key) |
|
Visualization.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["flagged_words_ratio"] = [cond] |
|
|
|
if "lang_id_score" in columns: |
|
with st.sidebar.expander("Language ID confidence score"): |
|
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed." |
|
cutoff_lang_id_score = st.slider( |
|
cutoff_def, 0.0, 1.0, 0.0, step=0.01 |
|
) |
|
new_key = ("lang_id_score", cutoff_lang_id_score, False) |
|
keys.append(new_key) |
|
Visualization.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["lang_id_score"] = [cond] |
|
|
|
if "perplexity_score" in columns: |
|
with st.sidebar.expander("Perplexity score"): |
|
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed." |
|
max_pp = int(np.max(self.docs["perplexity_score"])) + 1 |
|
cutoff_perplexity_score = st.slider(cutoff_def, 0, max_pp, max_pp) |
|
new_key = ("perplexity_score", cutoff_perplexity_score, True) |
|
keys.append(new_key) |
|
Visualization.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
print_discared_by_cond(cond) |
|
conds["perplexity_score"] = [cond] |
|
|
|
return keys, conds |
|
|
|
self.keys, conds = set_sliders() |
|
self.parameters = self.keys * 1 |
|
|
|
all_conds = [subcond for cond in list(conds.values()) for subcond in cond] |
|
all_conds = np.all(all_conds, axis=0) |
|
|
|
with st.expander( |
|
f"Filtering on documents, for {self.num_docs} {self.lang} documents" |
|
): |
|
st.header( |
|
f"Filtering on documents, for {self.num_docs} {self.lang} documents" |
|
) |
|
|
|
def display_dataset(cond, description): |
|
displayed_docs = self.docs.loc[cond] |
|
st.subheader( |
|
f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)" |
|
) |
|
st.markdown( |
|
"Click on a column to sort by it, place the cursor on the text to display it." |
|
) |
|
st.dataframe(displayed_docs) |
|
|
|
display_dataset(np.invert(all_conds), "Discarded documents") |
|
|
|
|
|
display_discarded_documents_by_filter = st.checkbox( |
|
"Display discarded documents by filter" |
|
) |
|
|
|
if display_discarded_documents_by_filter: |
|
columns = list(self.docs) |
|
|
|
if "number_words" in columns: |
|
cond_filter = np.invert(np.all(conds["number_words"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the number of words", |
|
) |
|
|
|
if "repetitions_ratio" in columns: |
|
cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the repetitions ratio", |
|
) |
|
|
|
if "special_characters_ratio" in columns: |
|
cond_filter = np.invert( |
|
np.all(conds["special_characters_ratio"], axis=0) |
|
) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the special characters ratio", |
|
) |
|
|
|
if "stopwords_ratio" in columns: |
|
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the stop words ratio", |
|
) |
|
|
|
if "flagged_words_ratio" in columns: |
|
cond_filter = np.invert( |
|
np.all(conds["flagged_words_ratio"], axis=0) |
|
) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the flagged words ratio", |
|
) |
|
|
|
if "lang_id_score" in columns: |
|
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the language identification confidence score", |
|
) |
|
|
|
if "perplexity_score" in columns: |
|
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0)) |
|
display_dataset( |
|
cond_filter, |
|
"Discarded documents for the filter on the perplexity score", |
|
) |
|
|
|
display_dataset(all_conds, "Retained documents") |
|
|
|
st.header("Download data") |
|
|
|
with open(self.path_data) as json_file: |
|
btn = st.download_button( |
|
label="Download data as json", |
|
data=json_file, |
|
file_name="data.json", |
|
) |
|
|
|
def filtering_of_words(self): |
|
if not (self.words is None): |
|
st.sidebar.subheader("Parameter of the filtering on words") |
|
|
|
with st.sidebar.expander("Length of words"): |
|
cutoff_def = "If the length of a word is higher than this number, the word is removed." |
|
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200) |
|
cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word) |
|
new_key = ("len_word", cutoff_word, True) |
|
self.parameters.append(new_key) |
|
Visualization.plot_hist(self.words, new_key) |
|
|
|
with st.sidebar.expander("Words with incorrect substrings"): |
|
incorrect_substrings = st.checkbox( |
|
"Remove words with incorrect substrings." |
|
) |
|
self.parameters.append(("incorrect_substrings", incorrect_substrings)) |
|
|
|
cond_words = self.words["len_word"] <= cutoff_word |
|
if incorrect_substrings: |
|
cond_words = cond_words & np.invert( |
|
self.words["incorrect_substring"] |
|
) |
|
|
|
with st.expander( |
|
f"Filtering on words, for {self.num_docs} {self.lang} documents" |
|
): |
|
st.header( |
|
f"Filtering on words, for {self.num_docs} {self.lang} documents" |
|
) |
|
|
|
st.markdown( |
|
f"Since the number of words is way larger than the number of documents, " |
|
f"we consider in this section words for the first {self.num_docs_for_words} documents only." |
|
) |
|
|
|
discarded_words = self.words.loc[np.invert(cond_words)] |
|
st.subheader( |
|
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)" |
|
) |
|
st.markdown( |
|
"Click on a column to sort by it, place the cursor on the text to display it." |
|
) |
|
st.dataframe(discarded_words) |
|
|
|
retained_words = self.words.loc[cond_words] |
|
st.subheader( |
|
f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)" |
|
) |
|
st.markdown( |
|
"Click on a column to sort by it, place the cursor on the text to display it." |
|
) |
|
st.dataframe(retained_words) |
|
|
|
def download_parameters(self): |
|
st.sidebar.subheader("Download parameters") |
|
btn = st.sidebar.download_button( |
|
label="Download current parameters as json", |
|
data=json.dumps(self.parameters), |
|
file_name=f"parameters_{self.lang_dataset_id}.json", |
|
) |
|
|
|
""" |
|
def plot_zipf_law(self): |
|
if not (self.words is None): |
|
st.header("Zipf's Law") |
|
|
|
display_zipf_law = st.checkbox("Display Zipf's Law") |
|
|
|
if display_zipf_law: |
|
|
|
freq_words = {} |
|
for _, row in self.words.iterrows(): |
|
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1 |
|
freq_words = np.array(list(freq_words.values())) |
|
freq_words = -np.sort(-freq_words) |
|
|
|
fig, ax = plt.subplots() |
|
ax.loglog(freq_words) |
|
ax.set_title("Zipf's Law") |
|
ax.set_xlabel("$i$-th most frequent word") |
|
ax.set_ylabel("frequency in the documents") |
|
st.pyplot(fig) |
|
""" |
|
|
|
def analyse_personal_doc(self): |
|
with st.expander("Analyse your own document"): |
|
st.header("Analyse your own document") |
|
|
|
personal_doc = st.text_area( |
|
label="Paste here the document you want to analyse", |
|
value="", |
|
max_chars=10000, |
|
) |
|
|
|
is_discarded = False |
|
|
|
def is_doc_discarded(key, score): |
|
if key[2]: |
|
return score > key[1] |
|
else: |
|
return score < key[1] |
|
|
|
if personal_doc: |
|
|
|
st.markdown("Statistics of the document:") |
|
|
|
for key in self.keys: |
|
if key[0] == "number_words": |
|
words = ModifyingDocuments.get_words_from_document( |
|
personal_doc, |
|
self.sentencepiece_model_tok, |
|
lower_case=False, |
|
strip_characters=self.param["strip_characters"], |
|
) |
|
if key[2]: |
|
st.markdown(f"Number of words: {len(words)}") |
|
if is_doc_discarded(key, len(words)): |
|
is_discarded = True |
|
|
|
elif key[0] == "repetitions_ratio": |
|
repetitions_ratio = Filtering.compute_repetitions_ratio( |
|
personal_doc, int(key[3]) |
|
) |
|
repetitions_ratio = round(repetitions_ratio, 3) |
|
st.markdown(f"Repetitions ratio: {repetitions_ratio}") |
|
if is_doc_discarded(key, repetitions_ratio): |
|
is_discarded = True |
|
|
|
elif key[0] == "special_characters_ratio": |
|
special_characters_ratio = ( |
|
Filtering.compute_special_characters_ratio( |
|
personal_doc, self.param["special_characters"] |
|
) |
|
) |
|
special_characters_ratio = round(special_characters_ratio, 3) |
|
st.markdown( |
|
f"Special characters ratio: {special_characters_ratio}" |
|
) |
|
if is_doc_discarded(key, special_characters_ratio): |
|
is_discarded = True |
|
|
|
elif key[0] == "stopwords_ratio": |
|
stopwords_ratio = Filtering.compute_stopwords_ratio( |
|
personal_doc, |
|
self.sentencepiece_model_tok, |
|
self.param["strip_characters"], |
|
self.param["cond_words_augmentation"], |
|
self.param["words_augmentation_group_sizes"], |
|
self.param["words_augmentation_join_char"], |
|
self.stopwords, |
|
) |
|
stopwords_ratio = round(stopwords_ratio, 3) |
|
st.markdown(f"Stop words ratio: {stopwords_ratio}") |
|
if is_doc_discarded(key, stopwords_ratio): |
|
is_discarded = True |
|
|
|
elif key[0] == "flagged_words_ratio": |
|
flagged_words_ratio = Filtering.compute_flagged_words_ratio( |
|
personal_doc, |
|
self.sentencepiece_model_tok, |
|
self.param["strip_characters"], |
|
self.param["cond_words_augmentation"], |
|
self.param["words_augmentation_group_sizes"], |
|
self.param["words_augmentation_join_char"], |
|
self.flagged_words, |
|
) |
|
flagged_words_ratio = round(flagged_words_ratio, 3) |
|
st.markdown(f"Flagged words ratio: {flagged_words_ratio}") |
|
if is_doc_discarded(key, flagged_words_ratio): |
|
is_discarded = True |
|
|
|
elif key[0] == "lang_id_score": |
|
( |
|
lang_pred_dataset_id, |
|
lang_id_score, |
|
) = Filtering.compute_lang_id_pred_score( |
|
personal_doc, self.model_lang_id |
|
) |
|
lang_id_score = round(lang_id_score, 3) |
|
st.markdown( |
|
f"Language identification confidence score: {lang_id_score}" |
|
) |
|
if is_doc_discarded(key, flagged_words_ratio) or ( |
|
self.lang_dataset_id != lang_pred_dataset_id |
|
): |
|
is_discarded = True |
|
|
|
elif key[0] == "perplexity_score": |
|
perplexity_score = Filtering.compute_perplexity_score( |
|
personal_doc, |
|
self.sentencepiece_model, |
|
self.kenlm_model, |
|
) |
|
perplexity_score = round(perplexity_score, 3) |
|
st.markdown(f"Perplexity score: {perplexity_score}") |
|
if is_doc_discarded(key, perplexity_score): |
|
is_discarded = True |
|
|
|
is_discarded = "" if is_discarded else "not " |
|
st.markdown( |
|
f"With the current filtering parameters, this document **is {is_discarded}discarded**." |
|
) |
|
|
|
def visualization(self): |
|
self.warning_preamble() |
|
self.preamble() |
|
self.open_data() |
|
self.set_title() |
|
self.filtering_of_docs() |
|
self.filtering_of_words() |
|
self.download_parameters() |
|
self.analyse_personal_doc() |
|
|
|
|
|
path_instructions = "./explanation_filtering_pipeline.pdf" |
|
path_data = "./en_examples_with_stats.json" |
|
lang = "English" |
|
num_docs = 5000 |
|
num_docs_for_words = 500 |
|
max_len_text_display = 10000 |
|
|
|
|
|
lang_dataset_id = "en" |
|
path_fasttext_model = "./lid.176.bin" |
|
path_sentencepiece_model = "./en.sp.model" |
|
path_kenlm_model = "./en.arpa.bin" |
|
|
|
visualization = Visualization( |
|
path_instructions, |
|
path_data, |
|
lang, |
|
num_docs, |
|
num_docs_for_words, |
|
max_len_text_display, |
|
lang_dataset_id, |
|
path_fasttext_model, |
|
path_sentencepiece_model, |
|
path_kenlm_model, |
|
) |
|
visualization.visualization() |
|
|