Spaces:
Configuration error
Configuration error
#!/usr/bin/env python | |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
from __future__ import annotations | |
import argparse | |
import os | |
import random | |
import uuid | |
from datetime import datetime | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import FluxPipeline | |
from PIL import Image | |
from torchvision.utils import make_grid, save_image | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from app import safety_check | |
from app.sana_pipeline import SanaPipeline | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
DEMO_PORT = int(os.getenv("DEMO_PORT", "15432")) | |
os.environ["GRADIO_EXAMPLES_CACHE"] = "./.gradio/cache" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
style_list = [ | |
{ | |
"name": "(No style)", | |
"prompt": "{prompt}", | |
"negative_prompt": "", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, " | |
"cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "Photographic", | |
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "Manga", | |
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", | |
}, | |
{ | |
"name": "Digital Art", | |
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", | |
"negative_prompt": "photo, photorealistic, realism, ugly", | |
}, | |
{ | |
"name": "Pixel art", | |
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", | |
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, " | |
"majestic, magical, fantasy art, cover art, dreamy", | |
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, " | |
"glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, " | |
"disfigured, sloppy, duplicate, mutated, black and white", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, " | |
"detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, " | |
"ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
] | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "(No style)" | |
SCHEDULE_NAME = ["Flow_DPM_Solver"] | |
DEFAULT_SCHEDULE_NAME = "Flow_DPM_Solver" | |
NUM_IMAGES_PER_PROMPT = 1 | |
TEST_TIMES = 0 | |
FILENAME = f"output/port{DEMO_PORT}_inference_count.txt" | |
def set_env(seed=0): | |
torch.manual_seed(seed) | |
torch.set_grad_enabled(False) | |
def read_inference_count(): | |
global TEST_TIMES | |
try: | |
with open(FILENAME) as f: | |
count = int(f.read().strip()) | |
except FileNotFoundError: | |
count = 0 | |
TEST_TIMES = count | |
return count | |
def write_inference_count(count): | |
with open(FILENAME, "w") as f: | |
f.write(str(count)) | |
def run_inference(num_imgs=1): | |
TEST_TIMES = read_inference_count() | |
TEST_TIMES += int(num_imgs) | |
write_inference_count(TEST_TIMES) | |
return ( | |
f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: " | |
f"16px; color:red; font-weight: bold;'>{TEST_TIMES}</span>" | |
) | |
def update_inference_count(): | |
count = read_inference_count() | |
return ( | |
f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: " | |
f"16px; color:red; font-weight: bold;'>{count}</span>" | |
) | |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
if not negative: | |
negative = "" | |
return p.replace("{prompt}", positive), n + negative | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, help="config") | |
parser.add_argument( | |
"--model_path", | |
nargs="?", | |
default="output/Sana_D20/SANA.pth", | |
type=str, | |
help="Path to the model file (positional)", | |
) | |
parser.add_argument("--output", default="./", type=str) | |
parser.add_argument("--bs", default=1, type=int) | |
parser.add_argument("--image_size", default=1024, type=int) | |
parser.add_argument("--cfg_scale", default=5.0, type=float) | |
parser.add_argument("--pag_scale", default=2.0, type=float) | |
parser.add_argument("--seed", default=42, type=int) | |
parser.add_argument("--step", default=-1, type=int) | |
parser.add_argument("--custom_image_size", default=None, type=int) | |
parser.add_argument( | |
"--shield_model_path", | |
type=str, | |
help="The path to shield model, we employ ShieldGemma-2B by default.", | |
default="google/shieldgemma-2b", | |
) | |
return parser.parse_args() | |
args = get_args() | |
if torch.cuda.is_available(): | |
weight_dtype = torch.float16 | |
model_path = args.model_path | |
pipe = SanaPipeline(args.config) | |
pipe.from_pretrained(model_path) | |
pipe.register_progress_bar(gr.Progress()) | |
repo_name = "black-forest-labs/FLUX.1-dev" | |
pipe2 = FluxPipeline.from_pretrained(repo_name, torch_dtype=torch.float16).to("cuda") | |
# safety checker | |
safety_checker_tokenizer = AutoTokenizer.from_pretrained(args.shield_model_path) | |
safety_checker_model = AutoModelForCausalLM.from_pretrained( | |
args.shield_model_path, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
).to(device) | |
set_env(42) | |
def save_image_sana(img, seed="", save_img=False): | |
unique_name = f"{str(uuid.uuid4())}_{seed}.png" | |
save_path = os.path.join(f"output/online_demo_img/{datetime.now().date()}") | |
os.umask(0o000) # file permission: 666; dir permission: 777 | |
os.makedirs(save_path, exist_ok=True) | |
unique_name = os.path.join(save_path, unique_name) | |
if save_img: | |
save_image(img, unique_name, nrow=1, normalize=True, value_range=(-1, 1)) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
async def generate_2( | |
prompt: str = None, | |
negative_prompt: str = "", | |
style: str = DEFAULT_STYLE_NAME, | |
use_negative_prompt: bool = False, | |
num_imgs: int = 1, | |
seed: int = 0, | |
height: int = 1024, | |
width: int = 1024, | |
flow_dpms_guidance_scale: float = 5.0, | |
flow_dpms_pag_guidance_scale: float = 2.0, | |
flow_dpms_inference_steps: int = 20, | |
randomize_seed: bool = False, | |
): | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
print(f"PORT: {DEMO_PORT}, model_path: {model_path}") | |
if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt): | |
prompt = "A red heart." | |
print(prompt) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
prompt, negative_prompt = apply_style(style, prompt, negative_prompt) | |
with torch.no_grad(): | |
images = pipe2( | |
prompt=prompt, | |
height=height, | |
width=width, | |
guidance_scale=3.5, | |
num_inference_steps=50, | |
num_images_per_prompt=num_imgs, | |
max_sequence_length=256, | |
generator=generator, | |
).images | |
save_img = False | |
img = images | |
if save_img: | |
img = [save_image_sana(img, seed, save_img=save_image) for img in images] | |
print(img) | |
torch.cuda.empty_cache() | |
return img | |
async def generate( | |
prompt: str = None, | |
negative_prompt: str = "", | |
style: str = DEFAULT_STYLE_NAME, | |
use_negative_prompt: bool = False, | |
num_imgs: int = 1, | |
seed: int = 0, | |
height: int = 1024, | |
width: int = 1024, | |
flow_dpms_guidance_scale: float = 5.0, | |
flow_dpms_pag_guidance_scale: float = 2.0, | |
flow_dpms_inference_steps: int = 20, | |
randomize_seed: bool = False, | |
): | |
global TEST_TIMES | |
# seed = 823753551 | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
print(f"PORT: {DEMO_PORT}, model_path: {model_path}, time_times: {TEST_TIMES}") | |
if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt): | |
prompt = "A red heart." | |
print(prompt) | |
num_inference_steps = flow_dpms_inference_steps | |
guidance_scale = flow_dpms_guidance_scale | |
pag_guidance_scale = flow_dpms_pag_guidance_scale | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
prompt, negative_prompt = apply_style(style, prompt, negative_prompt) | |
pipe.progress_fn(0, desc="Sana Start") | |
with torch.no_grad(): | |
images = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
pag_guidance_scale=pag_guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_imgs, | |
generator=generator, | |
) | |
pipe.progress_fn(1.0, desc="Sana End") | |
save_img = False | |
if save_img: | |
img = [save_image_sana(img, seed, save_img=save_image) for img in images] | |
print(img) | |
else: | |
if num_imgs > 1: | |
nrow = 2 | |
else: | |
nrow = 1 | |
img = make_grid(images, nrow=nrow, normalize=True, value_range=(-1, 1)) | |
img = img.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() | |
img = [Image.fromarray(img.astype(np.uint8))] | |
torch.cuda.empty_cache() | |
return img | |
TEST_TIMES = read_inference_count() | |
model_size = "1.6" if "D20" in args.model_path else "0.6" | |
title = f""" | |
<div style='display: flex; align-items: center; justify-content: center; text-align: center;'> | |
<img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="50%" alt="logo"/> | |
</div> | |
""" | |
DESCRIPTION = f""" | |
<p><span style="font-size: 36px; font-weight: bold;">Sana-{model_size}B</span><span style="font-size: 20px; font-weight: bold;">{args.image_size}px</span></p> | |
<p style="font-size: 16px; font-weight: bold;">Sana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer</p> | |
<p><span style="font-size: 16px;"><a href="https://arxiv.org/abs/2410.10629">[Paper]</a></span> <span style="font-size: 16px;"><a href="https://github.com/NVlabs/Sana">[Github(coming soon)]</a></span> <span style="font-size: 16px;"><a href="https://nvlabs.github.io/Sana">[Project]</a></span</p> | |
<p style="font-size: 16px; font-weight: bold;">Powered by <a href="https://hanlab.mit.edu/projects/dc-ae">DC-AE</a> with 32x latent space</p> | |
<p style="font-size: 16px; font-weight: bold;">Unsafe word will give you a 'Red Heart' in the image instead.</p> | |
""" | |
if model_size == "0.6": | |
DESCRIPTION += "\n<p>0.6B model's text rendering ability is limited.</p>" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
examples = [ | |
'a cyberpunk cat with a neon sign that says "Sana"', | |
"A very detailed and realistic full body photo set of a tall, slim, and athletic Shiba Inu in a white oversized straight t-shirt, white shorts, and short white shoes.", | |
"Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, art nouveau style, illustration art artwork by SenseiJaye, intricate detail.", | |
"portrait photo of a girl, photograph, highly detailed face, depth of field", | |
'make me a logo that says "So Fast" with a really cool flying dragon shape with lightning sparks all over the sides and all of it contains Indonesian language', | |
"🐶 Wearing 🕶 flying on the 🌈", | |
# "👧 with 🌹 in the ❄️", | |
# "an old rusted robot wearing pants and a jacket riding skis in a supermarket.", | |
# "professional portrait photo of an anthropomorphic cat wearing fancy gentleman hat and jacket walking in autumn forest.", | |
# "Astronaut in a jungle, cold color palette, muted colors, detailed", | |
# "a stunning and luxurious bedroom carved into a rocky mountainside seamlessly blending nature with modern design with a plush earth-toned bed textured stone walls circular fireplace massive uniquely shaped window framing snow-capped mountains dense forests", | |
] | |
css = """ | |
.gradio-container{max-width: 1024px !important} | |
h1{text-align:center} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(title) | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
info_box = gr.Markdown( | |
value=f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: 16px; color:red; font-weight: bold;'>{read_inference_count()}</span>" | |
) | |
demo.load(fn=update_inference_count, outputs=info_box) # update the value when re-loading the page | |
# with gr.Row(equal_height=False): | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run-sana", scale=0) | |
run_button2 = gr.Button("Run-flux", scale=0) | |
with gr.Row(): | |
result = gr.Gallery(label="Result from Sana", show_label=True, columns=NUM_IMAGES_PER_PROMPT, format="webp") | |
result_2 = gr.Gallery( | |
label="Result from FLUX", show_label=True, columns=NUM_IMAGES_PER_PROMPT, format="webp" | |
) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Group(): | |
with gr.Row(visible=True): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
flow_dpms_inference_steps = gr.Slider( | |
label="Sampling steps", | |
minimum=5, | |
maximum=40, | |
step=1, | |
value=18, | |
) | |
flow_dpms_guidance_scale = gr.Slider( | |
label="CFG Guidance scale", | |
minimum=1, | |
maximum=10, | |
step=0.1, | |
value=5.0, | |
) | |
flow_dpms_pag_guidance_scale = gr.Slider( | |
label="PAG Guidance scale", | |
minimum=1, | |
maximum=4, | |
step=0.5, | |
value=2.0, | |
) | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
style_selection = gr.Radio( | |
show_label=True, | |
container=True, | |
interactive=True, | |
choices=STYLE_NAMES, | |
value=DEFAULT_STYLE_NAME, | |
label="Image Style", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
schedule = gr.Radio( | |
show_label=True, | |
container=True, | |
interactive=True, | |
choices=SCHEDULE_NAME, | |
value=DEFAULT_SCHEDULE_NAME, | |
label="Sampler Schedule", | |
visible=True, | |
) | |
num_imgs = gr.Slider( | |
label="Num Images", | |
minimum=1, | |
maximum=6, | |
step=1, | |
value=1, | |
) | |
run_button.click(fn=run_inference, inputs=num_imgs, outputs=info_box) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result], | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result_2], | |
fn=generate_2, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
api_name=False, | |
) | |
run_button.click( | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
style_selection, | |
use_negative_prompt, | |
num_imgs, | |
seed, | |
height, | |
width, | |
flow_dpms_guidance_scale, | |
flow_dpms_pag_guidance_scale, | |
flow_dpms_inference_steps, | |
randomize_seed, | |
], | |
outputs=[result], | |
queue=True, | |
) | |
run_button2.click( | |
fn=generate_2, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
style_selection, | |
use_negative_prompt, | |
num_imgs, | |
seed, | |
height, | |
width, | |
flow_dpms_guidance_scale, | |
flow_dpms_pag_guidance_scale, | |
flow_dpms_inference_steps, | |
randomize_seed, | |
], | |
outputs=[result_2], | |
queue=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=DEMO_PORT, debug=True, share=True) | |