Spaces:
Configuration error
Configuration error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma | |
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from timm.models.layers import DropPath | |
from diffusion.model.builder import MODELS | |
from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp | |
from diffusion.model.nets.fastlinear.modules import TritonLiteMLA, TritonMBConvPreGLU | |
from diffusion.model.nets.sana_blocks import ( | |
Attention, | |
CaptionEmbedder, | |
FlashAttention, | |
LiteLA, | |
MultiHeadCrossAttention, | |
PatchEmbed, | |
T2IFinalLayer, | |
TimestepEmbedder, | |
t2i_modulate, | |
) | |
from diffusion.model.norms import RMSNorm | |
from diffusion.model.utils import auto_grad_checkpoint, to_2tuple | |
from diffusion.utils.dist_utils import get_rank | |
from diffusion.utils.logger import get_root_logger | |
class SanaBlock(nn.Module): | |
""" | |
A Sana block with global shared adaptive layer norm (adaLN-single) conditioning. | |
""" | |
def __init__( | |
self, | |
hidden_size, | |
num_heads, | |
mlp_ratio=4.0, | |
drop_path=0, | |
input_size=None, | |
qk_norm=False, | |
attn_type="flash", | |
ffn_type="mlp", | |
mlp_acts=("silu", "silu", None), | |
linear_head_dim=32, | |
**block_kwargs, | |
): | |
super().__init__() | |
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
if attn_type == "flash": | |
# flash self attention | |
self.attn = FlashAttention( | |
hidden_size, | |
num_heads=num_heads, | |
qkv_bias=True, | |
qk_norm=qk_norm, | |
**block_kwargs, | |
) | |
elif attn_type == "linear": | |
# linear self attention | |
# TODO: Here the num_heads set to 36 for tmp used | |
self_num_heads = hidden_size // linear_head_dim | |
self.attn = LiteLA(hidden_size, hidden_size, heads=self_num_heads, eps=1e-8, qk_norm=qk_norm) | |
elif attn_type == "triton_linear": | |
# linear self attention with triton kernel fusion | |
# TODO: Here the num_heads set to 36 for tmp used | |
self_num_heads = hidden_size // linear_head_dim | |
self.attn = TritonLiteMLA(hidden_size, num_heads=self_num_heads, eps=1e-8) | |
elif attn_type == "vanilla": | |
# vanilla self attention | |
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True) | |
else: | |
raise ValueError(f"{attn_type} type is not defined.") | |
self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs) | |
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
# to be compatible with lower version pytorch | |
if ffn_type == "dwmlp": | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.mlp = DWMlp( | |
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 | |
) | |
elif ffn_type == "glumbconv": | |
self.mlp = GLUMBConv( | |
in_features=hidden_size, | |
hidden_features=int(hidden_size * mlp_ratio), | |
use_bias=(True, True, False), | |
norm=(None, None, None), | |
act=mlp_acts, | |
) | |
elif ffn_type == "glumbconv_dilate": | |
self.mlp = GLUMBConv( | |
in_features=hidden_size, | |
hidden_features=int(hidden_size * mlp_ratio), | |
use_bias=(True, True, False), | |
norm=(None, None, None), | |
act=mlp_acts, | |
dilation=2, | |
) | |
elif ffn_type == "mbconvpreglu": | |
self.mlp = MBConvPreGLU( | |
in_dim=hidden_size, | |
out_dim=hidden_size, | |
mid_dim=int(hidden_size * mlp_ratio), | |
use_bias=(True, True, False), | |
norm=None, | |
act=("silu", "silu", None), | |
) | |
elif ffn_type == "triton_mbconvpreglu": | |
self.mlp = TritonMBConvPreGLU( | |
in_dim=hidden_size, | |
out_dim=hidden_size, | |
mid_dim=int(hidden_size * mlp_ratio), | |
use_bias=(True, True, False), | |
norm=None, | |
act=("silu", "silu", None), | |
) | |
elif ffn_type == "mlp": | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.mlp = Mlp( | |
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 | |
) | |
else: | |
raise ValueError(f"{ffn_type} type is not defined.") | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5) | |
def forward(self, x, y, t, mask=None, **kwargs): | |
B, N, C = x.shape | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + t.reshape(B, 6, -1) | |
).chunk(6, dim=1) | |
x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C)) | |
x = x + self.cross_attn(x, y, mask) | |
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) | |
return x | |
############################################################################# | |
# Core Sana Model # | |
################################################################################# | |
class Sana(nn.Module): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
pred_sigma=True, | |
drop_path: float = 0.0, | |
caption_channels=2304, | |
pe_interpolation=1.0, | |
config=None, | |
model_max_length=120, | |
qk_norm=False, | |
y_norm=False, | |
norm_eps=1e-5, | |
attn_type="flash", | |
ffn_type="mlp", | |
use_pe=True, | |
y_norm_scale_factor=1.0, | |
patch_embed_kernel=None, | |
mlp_acts=("silu", "silu", None), | |
linear_head_dim=32, | |
**kwargs, | |
): | |
super().__init__() | |
self.pred_sigma = pred_sigma | |
self.in_channels = in_channels | |
self.out_channels = in_channels * 2 if pred_sigma else in_channels | |
self.patch_size = patch_size | |
self.num_heads = num_heads | |
self.pe_interpolation = pe_interpolation | |
self.depth = depth | |
self.use_pe = use_pe | |
self.y_norm = y_norm | |
self.fp32_attention = kwargs.get("use_fp32_attention", False) | |
kernel_size = patch_embed_kernel or patch_size | |
self.x_embedder = PatchEmbed( | |
input_size, patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True | |
) | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
num_patches = self.x_embedder.num_patches | |
self.base_size = input_size // self.patch_size | |
# Will use fixed sin-cos embedding: | |
self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size)) | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | |
self.y_embedder = CaptionEmbedder( | |
in_channels=caption_channels, | |
hidden_size=hidden_size, | |
uncond_prob=class_dropout_prob, | |
act_layer=approx_gelu, | |
token_num=model_max_length, | |
) | |
if self.y_norm: | |
self.attention_y_norm = RMSNorm(hidden_size, scale_factor=y_norm_scale_factor, eps=norm_eps) | |
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList( | |
[ | |
SanaBlock( | |
hidden_size, | |
num_heads, | |
mlp_ratio=mlp_ratio, | |
drop_path=drop_path[i], | |
input_size=(input_size // patch_size, input_size // patch_size), | |
qk_norm=qk_norm, | |
attn_type=attn_type, | |
ffn_type=ffn_type, | |
mlp_acts=mlp_acts, | |
linear_head_dim=linear_head_dim, | |
) | |
for i in range(depth) | |
] | |
) | |
self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) | |
self.initialize_weights() | |
if config: | |
logger = get_root_logger(os.path.join(config.work_dir, "train_log.log")) | |
logger = logger.warning | |
else: | |
logger = print | |
if get_rank() == 0: | |
logger( | |
f"use pe: {use_pe}, position embed interpolation: {self.pe_interpolation}, base size: {self.base_size}" | |
) | |
logger( | |
f"attention type: {attn_type}; ffn type: {ffn_type}; " | |
f"autocast linear attn: {os.environ.get('AUTOCAST_LINEAR_ATTN', False)}" | |
) | |
def forward(self, x, timestep, y, mask=None, data_info=None, **kwargs): | |
""" | |
Forward pass of Sana. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N, 1, 120, C) tensor of class labels | |
""" | |
x = x.to(self.dtype) | |
timestep = timestep.to(self.dtype) | |
y = y.to(self.dtype) | |
pos_embed = self.pos_embed.to(self.dtype) | |
self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size | |
if self.use_pe: | |
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
else: | |
x = self.x_embedder(x) | |
t = self.t_embedder(timestep.to(x.dtype)) # (N, D) | |
t0 = self.t_block(t) | |
y = self.y_embedder(y, self.training) # (N, 1, L, D) | |
if self.y_norm: | |
y = self.attention_y_norm(y) | |
if mask is not None: | |
if mask.shape[0] != y.shape[0]: | |
mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
mask = mask.squeeze(1).squeeze(1) | |
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
y_lens = mask.sum(dim=1).tolist() | |
else: | |
y_lens = [y.shape[2]] * y.shape[0] | |
y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
for block in self.blocks: | |
x = auto_grad_checkpoint(block, x, y, t0, y_lens) # (N, T, D) #support grad checkpoint | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
return x | |
def __call__(self, *args, **kwargs): | |
""" | |
This method allows the object to be called like a function. | |
It simply calls the forward method. | |
""" | |
return self.forward(*args, **kwargs) | |
def forward_with_dpmsolver(self, x, timestep, y, mask=None, **kwargs): | |
""" | |
dpm solver donnot need variance prediction | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
model_out = self.forward(x, timestep, y, mask) | |
return model_out.chunk(2, dim=1)[0] if self.pred_sigma else model_out | |
def unpatchify(self, x): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.out_channels | |
p = self.x_embedder.patch_size[0] | |
h = w = int(x.shape[1] ** 0.5) | |
assert h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
x = torch.einsum("nhwpqc->nchpwq", x) | |
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) | |
return imgs | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
if self.use_pe: | |
# Initialize (and freeze) pos_embed by sin-cos embedding: | |
pos_embed = get_2d_sincos_pos_embed( | |
self.pos_embed.shape[-1], | |
int(self.x_embedder.num_patches**0.5), | |
pe_interpolation=self.pe_interpolation, | |
base_size=self.base_size, | |
) | |
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.x_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
nn.init.normal_(self.t_block[1].weight, std=0.02) | |
# Initialize caption embedding MLP: | |
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) | |
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) | |
def dtype(self): | |
return next(self.parameters()).dtype | |
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, pe_interpolation=1.0, base_size=16): | |
""" | |
grid_size: int of the grid height and width | |
return: | |
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
if isinstance(grid_size, int): | |
grid_size = to_2tuple(grid_size) | |
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / pe_interpolation | |
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / pe_interpolation | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token and extra_tokens > 0: | |
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) | |
return pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
################################################################################# | |
# Sana Configs # | |
################################################################################# | |
def Sana_600M_P1_D28(**kwargs): | |
return Sana(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs) | |
def Sana_1600M_P1_D20(**kwargs): | |
# 20 layers, 1648.48M | |
return Sana(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs) | |