imw34531's picture
Upload folder using huggingface_hub
87e21d1 verified
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma
import os
import numpy as np
import torch
import torch.nn as nn
from timm.models.layers import DropPath
from diffusion.model.builder import MODELS
from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp
from diffusion.model.nets.fastlinear.modules import TritonLiteMLA, TritonMBConvPreGLU
from diffusion.model.nets.sana_blocks import (
Attention,
CaptionEmbedder,
FlashAttention,
LiteLA,
MultiHeadCrossAttention,
PatchEmbed,
T2IFinalLayer,
TimestepEmbedder,
t2i_modulate,
)
from diffusion.model.norms import RMSNorm
from diffusion.model.utils import auto_grad_checkpoint, to_2tuple
from diffusion.utils.dist_utils import get_rank
from diffusion.utils.logger import get_root_logger
class SanaBlock(nn.Module):
"""
A Sana block with global shared adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(
self,
hidden_size,
num_heads,
mlp_ratio=4.0,
drop_path=0,
input_size=None,
qk_norm=False,
attn_type="flash",
ffn_type="mlp",
mlp_acts=("silu", "silu", None),
linear_head_dim=32,
**block_kwargs,
):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
if attn_type == "flash":
# flash self attention
self.attn = FlashAttention(
hidden_size,
num_heads=num_heads,
qkv_bias=True,
qk_norm=qk_norm,
**block_kwargs,
)
elif attn_type == "linear":
# linear self attention
# TODO: Here the num_heads set to 36 for tmp used
self_num_heads = hidden_size // linear_head_dim
self.attn = LiteLA(hidden_size, hidden_size, heads=self_num_heads, eps=1e-8, qk_norm=qk_norm)
elif attn_type == "triton_linear":
# linear self attention with triton kernel fusion
# TODO: Here the num_heads set to 36 for tmp used
self_num_heads = hidden_size // linear_head_dim
self.attn = TritonLiteMLA(hidden_size, num_heads=self_num_heads, eps=1e-8)
elif attn_type == "vanilla":
# vanilla self attention
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True)
else:
raise ValueError(f"{attn_type} type is not defined.")
self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
# to be compatible with lower version pytorch
if ffn_type == "dwmlp":
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = DWMlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
)
elif ffn_type == "glumbconv":
self.mlp = GLUMBConv(
in_features=hidden_size,
hidden_features=int(hidden_size * mlp_ratio),
use_bias=(True, True, False),
norm=(None, None, None),
act=mlp_acts,
)
elif ffn_type == "glumbconv_dilate":
self.mlp = GLUMBConv(
in_features=hidden_size,
hidden_features=int(hidden_size * mlp_ratio),
use_bias=(True, True, False),
norm=(None, None, None),
act=mlp_acts,
dilation=2,
)
elif ffn_type == "mbconvpreglu":
self.mlp = MBConvPreGLU(
in_dim=hidden_size,
out_dim=hidden_size,
mid_dim=int(hidden_size * mlp_ratio),
use_bias=(True, True, False),
norm=None,
act=("silu", "silu", None),
)
elif ffn_type == "triton_mbconvpreglu":
self.mlp = TritonMBConvPreGLU(
in_dim=hidden_size,
out_dim=hidden_size,
mid_dim=int(hidden_size * mlp_ratio),
use_bias=(True, True, False),
norm=None,
act=("silu", "silu", None),
)
elif ffn_type == "mlp":
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
)
else:
raise ValueError(f"{ffn_type} type is not defined.")
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)
def forward(self, x, y, t, mask=None, **kwargs):
B, N, C = x.shape
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + t.reshape(B, 6, -1)
).chunk(6, dim=1)
x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C))
x = x + self.cross_attn(x, y, mask)
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
return x
#############################################################################
# Core Sana Model #
#################################################################################
@MODELS.register_module()
class Sana(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
pred_sigma=True,
drop_path: float = 0.0,
caption_channels=2304,
pe_interpolation=1.0,
config=None,
model_max_length=120,
qk_norm=False,
y_norm=False,
norm_eps=1e-5,
attn_type="flash",
ffn_type="mlp",
use_pe=True,
y_norm_scale_factor=1.0,
patch_embed_kernel=None,
mlp_acts=("silu", "silu", None),
linear_head_dim=32,
**kwargs,
):
super().__init__()
self.pred_sigma = pred_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if pred_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.pe_interpolation = pe_interpolation
self.depth = depth
self.use_pe = use_pe
self.y_norm = y_norm
self.fp32_attention = kwargs.get("use_fp32_attention", False)
kernel_size = patch_embed_kernel or patch_size
self.x_embedder = PatchEmbed(
input_size, patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True
)
self.t_embedder = TimestepEmbedder(hidden_size)
num_patches = self.x_embedder.num_patches
self.base_size = input_size // self.patch_size
# Will use fixed sin-cos embedding:
self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
self.y_embedder = CaptionEmbedder(
in_channels=caption_channels,
hidden_size=hidden_size,
uncond_prob=class_dropout_prob,
act_layer=approx_gelu,
token_num=model_max_length,
)
if self.y_norm:
self.attention_y_norm = RMSNorm(hidden_size, scale_factor=y_norm_scale_factor, eps=norm_eps)
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
SanaBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
drop_path=drop_path[i],
input_size=(input_size // patch_size, input_size // patch_size),
qk_norm=qk_norm,
attn_type=attn_type,
ffn_type=ffn_type,
mlp_acts=mlp_acts,
linear_head_dim=linear_head_dim,
)
for i in range(depth)
]
)
self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels)
self.initialize_weights()
if config:
logger = get_root_logger(os.path.join(config.work_dir, "train_log.log"))
logger = logger.warning
else:
logger = print
if get_rank() == 0:
logger(
f"use pe: {use_pe}, position embed interpolation: {self.pe_interpolation}, base size: {self.base_size}"
)
logger(
f"attention type: {attn_type}; ffn type: {ffn_type}; "
f"autocast linear attn: {os.environ.get('AUTOCAST_LINEAR_ATTN', False)}"
)
def forward(self, x, timestep, y, mask=None, data_info=None, **kwargs):
"""
Forward pass of Sana.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
pos_embed = self.pos_embed.to(self.dtype)
self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
if self.use_pe:
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
else:
x = self.x_embedder(x)
t = self.t_embedder(timestep.to(x.dtype)) # (N, D)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, 1, L, D)
if self.y_norm:
y = self.attention_y_norm(y)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
for block in self.blocks:
x = auto_grad_checkpoint(block, x, y, t0, y_lens) # (N, T, D) #support grad checkpoint
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def __call__(self, *args, **kwargs):
"""
This method allows the object to be called like a function.
It simply calls the forward method.
"""
return self.forward(*args, **kwargs)
def forward_with_dpmsolver(self, x, timestep, y, mask=None, **kwargs):
"""
dpm solver donnot need variance prediction
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
model_out = self.forward(x, timestep, y, mask)
return model_out.chunk(2, dim=1)[0] if self.pred_sigma else model_out
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum("nhwpqc->nchpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
return imgs
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
if self.use_pe:
# Initialize (and freeze) pos_embed by sin-cos embedding:
pos_embed = get_2d_sincos_pos_embed(
self.pos_embed.shape[-1],
int(self.x_embedder.num_patches**0.5),
pe_interpolation=self.pe_interpolation,
base_size=self.base_size,
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
nn.init.normal_(self.t_block[1].weight, std=0.02)
# Initialize caption embedding MLP:
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)
@property
def dtype(self):
return next(self.parameters()).dtype
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, pe_interpolation=1.0, base_size=16):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if isinstance(grid_size, int):
grid_size = to_2tuple(grid_size)
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / pe_interpolation
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / pe_interpolation
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
#################################################################################
# Sana Configs #
#################################################################################
@MODELS.register_module()
def Sana_600M_P1_D28(**kwargs):
return Sana(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs)
@MODELS.register_module()
def Sana_1600M_P1_D20(**kwargs):
# 20 layers, 1648.48M
return Sana(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs)