Spaces:
Running
on
Zero
Latent Consistency Distillation Example:
Latent Consistency Models (LCMs) is a method to distill a latent diffusion model to enable swift inference with minimal steps. This example demonstrates how to use latent consistency distillation to distill SDXL for inference with few timesteps.
Full model distillation
Running locally with PyTorch
Installing the dependencies
Before running the scripts, make sure to install the library's training dependencies:
Important
To make sure you can successfully run the latest versions of the example scripts, we highly recommend installing from source and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
Then cd in the example folder and run
pip install -r requirements.txt
And initialize an 🤗 Accelerate environment with:
accelerate config
Or for a default accelerate configuration without answering questions about your environment
accelerate config default
Or if your environment doesn't support an interactive shell e.g. a notebook
from accelerate.utils import write_basic_config
write_basic_config()
When running accelerate config
, if we specify torch compile mode to True there can be dramatic speedups.
Example
The following uses the Conceptual Captions 12M (CC12M) dataset as an example, and for illustrative purposes only. For best results you may consider large and high-quality text-image datasets such as LAION. You may also need to search the hyperparameter space according to the dataset you use.
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export OUTPUT_DIR="path/to/saved/model"
accelerate launch train_lcm_distill_sdxl_wds.py \
--pretrained_teacher_model=$MODEL_NAME \
--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \
--output_dir=$OUTPUT_DIR \
--mixed_precision=fp16 \
--resolution=1024 \
--learning_rate=1e-6 --loss_type="huber" --use_fix_crop_and_size --ema_decay=0.95 --adam_weight_decay=0.0 \
--max_train_steps=1000 \
--max_train_samples=4000000 \
--dataloader_num_workers=8 \
--train_shards_path_or_url="pipe:curl -L -s https://huggingface.co/datasets/laion/conceptual-captions-12m-webdataset/resolve/main/data/{00000..01099}.tar?download=true" \
--validation_steps=200 \
--checkpointing_steps=200 --checkpoints_total_limit=10 \
--train_batch_size=12 \
--gradient_checkpointing --enable_xformers_memory_efficient_attention \
--gradient_accumulation_steps=1 \
--use_8bit_adam \
--resume_from_checkpoint=latest \
--report_to=wandb \
--seed=453645634 \
--push_to_hub \
LCM-LoRA
Instead of fine-tuning the full model, we can also just train a LoRA that can be injected into any SDXL model.
Example
The following uses the Conceptual Captions 12M (CC12M) dataset as an example. For best results you may consider large and high-quality text-image datasets such as LAION.
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export OUTPUT_DIR="path/to/saved/model"
accelerate launch train_lcm_distill_lora_sdxl_wds.py \
--pretrained_teacher_model=$MODEL_DIR \
--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \
--output_dir=$OUTPUT_DIR \
--mixed_precision=fp16 \
--resolution=1024 \
--lora_rank=64 \
--learning_rate=1e-4 --loss_type="huber" --use_fix_crop_and_size --adam_weight_decay=0.0 \
--max_train_steps=1000 \
--max_train_samples=4000000 \
--dataloader_num_workers=8 \
--train_shards_path_or_url="pipe:curl -L -s https://huggingface.co/datasets/laion/conceptual-captions-12m-webdataset/resolve/main/data/{00000..01099}.tar?download=true" \
--validation_steps=200 \
--checkpointing_steps=200 --checkpoints_total_limit=10 \
--train_batch_size=12 \
--gradient_checkpointing --enable_xformers_memory_efficient_attention \
--gradient_accumulation_steps=1 \
--use_8bit_adam \
--resume_from_checkpoint=latest \
--report_to=wandb \
--seed=453645634 \
--push_to_hub \
We provide another version for LCM LoRA SDXL that follows best practices of peft
and leverages the datasets
library for quick experimentation. The script doesn't load two UNets unlike train_lcm_distill_lora_sdxl_wds.py
which reduces the memory requirements quite a bit.
Below is an example training command that trains an LCM LoRA on the Narutos dataset:
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export DATASET_NAME="lambdalabs/naruto-blip-captions"
export VAE_PATH="madebyollin/sdxl-vae-fp16-fix"
accelerate launch train_lcm_distill_lora_sdxl.py \
--pretrained_teacher_model=${MODEL_NAME} \
--pretrained_vae_model_name_or_path=${VAE_PATH} \
--output_dir="narutos-lora-lcm-sdxl" \
--mixed_precision="fp16" \
--dataset_name=$DATASET_NAME \
--resolution=1024 \
--train_batch_size=24 \
--gradient_accumulation_steps=1 \
--gradient_checkpointing \
--use_8bit_adam \
--lora_rank=64 \
--learning_rate=1e-4 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=3000 \
--checkpointing_steps=500 \
--validation_steps=50 \
--seed="0" \
--report_to="wandb" \
--push_to_hub