Spaces:
Running
Running
File size: 12,624 Bytes
2e66664 c8618b9 2e66664 587b58f 64048e9 76df10e 043c2d7 2e66664 c8618b9 459a21c 6d70884 1a135ff 6d70884 d48a45a 9697a6f bb9523a 6d6c0d5 6bbce1b 2e66664 6fc042a 043c2d7 bb9523a 043c2d7 bb9523a 043c2d7 6bbce1b 2e66664 c2d5e4a 6d6c0d5 df67096 e30570e 6d6c0d5 8c9ee04 c2d5e4a 6d6c0d5 b9bf35a e182234 76df10e b9bf35a e182234 158585c bb9523a 158585c 043c2d7 158585c 1a135ff f5db6d5 f9e9793 158585c bb9523a 158585c 6838a44 f5db6d5 2e66664 f5db6d5 fea46cb c9034be 0f4afba d09ad44 c2d5e4a f5db6d5 c9034be 0a8ab10 2e66664 a990e23 d09ad44 a990e23 bf776b2 a990e23 6bbce1b d09ad44 fea46cb e3c9443 6d6c0d5 6bbce1b 6d6c0d5 9697a6f f9e9793 9697a6f fea46cb 9697a6f 6838a44 e182234 d09ad44 e3c9443 c2d5e4a e182234 8c9ee04 cac2c49 278b4aa 8c9ee04 e298cbd 8c9ee04 e298cbd 8c9ee04 cac2c49 8c9ee04 cac2c49 e298cbd e3c9443 e182234 f5db6d5 71be77a e3c9443 043c2d7 9e8da41 043c2d7 9fc25b1 e3c9443 f5db6d5 71be77a e182234 f9e9793 c2d5e4a f9e9793 f5db6d5 e182234 6d6c0d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import gradio as gr
import torch
import soundfile as sf
import numpy as np
import yaml
from inference import MasteringStyleTransfer
from utils import download_youtube_audio
from config import args
import pyloudnorm as pyln
import tempfile
import os
import pandas as pd
mastering_transfer = MasteringStyleTransfer(args)
def denormalize_audio(audio, dtype=np.int16):
"""
Denormalize the audio from the range [-1, 1] to the full range of the specified dtype.
"""
if dtype == np.int16:
audio = np.clip(audio, -1, 1) # Ensure the input is in the range [-1, 1]
return (audio * 32767).astype(np.int16)
elif dtype == np.float32:
return audio.astype(np.float32)
else:
raise ValueError("Unsupported dtype. Use np.int16 or np.float32.")
def loudness_normalize(audio, sample_rate, target_loudness=-12.0):
# Ensure audio is float32
if audio.dtype != np.float32:
audio = audio.astype(np.float32)
# If audio is mono, reshape to (samples, 1)
if audio.ndim == 1:
audio = audio.reshape(-1, 1)
meter = pyln.Meter(sample_rate) # create BS.1770 meter
loudness = meter.integrated_loudness(audio)
loudness_normalized_audio = pyln.normalize.loudness(audio, loudness, target_loudness)
return loudness_normalized_audio
def process_youtube_url(url):
try:
audio, sr = download_youtube_audio(url)
return (sr, audio)
except Exception as e:
return None, f"Error processing YouTube URL: {str(e)}"
def process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
if input_youtube_url:
input_audio, error = process_youtube_url(input_youtube_url)
if error:
return None, None, error
if reference_youtube_url:
reference_audio, error = process_youtube_url(reference_youtube_url)
if error:
return None, None, error
if input_audio is None or reference_audio is None:
return None, None, "Both input and reference audio are required."
return process_audio(input_audio, reference_audio)
def to_numpy_audio(audio):
# Convert output_audio to numpy array if it's a tensor
if isinstance(audio, torch.Tensor):
audio = audio.cpu().numpy()
# check dimension
if audio.ndim == 1:
audio = audio.reshape(-1, 1)
elif audio.ndim > 2:
audio = audio.squeeze()
# Ensure the audio is in the correct shape (samples, channels)
if audio.shape[1] > audio.shape[0]:
audio = audio.transpose(1,0)
return audio
def process_audio(input_audio, reference_audio):
output_audio, predicted_params, sr, normalized_input = mastering_transfer.process_audio(
input_audio, reference_audio
)
param_output = mastering_transfer.get_param_output_string(predicted_params)
# Convert to numpy audio
output_audio = to_numpy_audio(output_audio)
normalized_input = to_numpy_audio(normalized_input)
# Normalize output audio
output_audio = loudness_normalize(output_audio, sr)
# Denormalize the audio to int16
output_audio = denormalize_audio(output_audio, dtype=np.int16)
return (sr, output_audio), param_output, (sr, normalized_input)
def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights, loss_function, clap_target_type, clap_text_prompt, clap_distance_fn):
if ito_reference_audio is None:
ito_reference_audio = reference_audio
af_weights = [float(w.strip()) for w in af_weights.split(',')]
ito_config = {
'optimizer': optimizer,
'learning_rate': learning_rate,
'num_steps': num_steps,
'af_weights': af_weights,
'sample_rate': args.sample_rate,
'loss_function': loss_function,
'clap_target_type': clap_target_type,
'clap_text_prompt': clap_text_prompt,
'clap_distance_fn': clap_distance_fn
}
input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate)
reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate)
ito_reference_tensor = mastering_transfer.preprocess_audio(ito_reference_audio, args.sample_rate)
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
all_results, min_loss_step = mastering_transfer.inference_time_optimization(
input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
)
ito_log = ""
loss_values = []
for result in all_results:
ito_log += result['log']
loss_values.append({"step": result['step'], "loss": result['loss']})
# Return the results of the last step
last_result = all_results[-1]
current_output = last_result['audio']
ito_param_output = mastering_transfer.get_param_output_string(last_result['params'])
# Convert to numpy audio
current_output = to_numpy_audio(current_output)
# Loudness normalize output audio
current_output = loudness_normalize(current_output, args.sample_rate)
# Denormalize the audio to int16
current_output = denormalize_audio(current_output, dtype=np.int16)
return (args.sample_rate, current_output), ito_param_output, num_steps, ito_log, pd.DataFrame(loss_values), all_results
def update_ito_output(all_results, selected_step):
selected_result = all_results[selected_step - 1]
current_output = selected_result['audio']
ito_param_output = mastering_transfer.get_param_output_string(selected_result['params'])
# Convert to numpy audio
current_output = to_numpy_audio(current_output)
# Loudness normalize output audio
current_output = loudness_normalize(current_output, args.sample_rate)
# Denormalize the audio to int16
current_output = denormalize_audio(current_output, dtype=np.int16)
return (args.sample_rate, current_output), ito_param_output, selected_result['log']
""" APP display """
with gr.Blocks() as demo:
gr.Markdown("# ITO-Master: Inference Time Optimization for Mastering Style Transfer")
with gr.Row():
gr.Markdown("Interactive demo of Inference Time Optimization (ITO) for Music Mastering Style Transfer. \
The mastering style transfer is performed by a differentiable audio processing model, and the predicted parameters are shown as the output. \
Perform mastering style transfer with an input source audio and a reference mastering style audio. On top of this result, you can perform ITO to optimize the reference embedding $z_{ref}$ to further gain control over the output mastering style.")
gr.Image("ito_snow.png", width=100, label="ITO pipeline")
gr.Markdown("## Step 1: Mastering Style Transfer")
with gr.Tab("Upload Audio"):
with gr.Row():
input_audio = gr.Audio(label="Source Audio $x_{in}$")
reference_audio = gr.Audio(label="Reference Style Audio $x_{ref}$")
process_button = gr.Button("Process Mastering Style Transfer")
with gr.Row():
with gr.Column():
output_audio = gr.Audio(label="Output Audio y'", type='numpy')
normalized_input = gr.Audio(label="Normalized Source Audio", type='numpy')
param_output = gr.Textbox(label="Predicted Parameters", lines=5)
process_button.click(
process_audio,
inputs=[input_audio, reference_audio],
outputs=[output_audio, param_output, normalized_input]
)
with gr.Tab("YouTube Audio"):
with gr.Row():
input_youtube_url = gr.Textbox(label="Input YouTube URL")
reference_youtube_url = gr.Textbox(label="Reference YouTube URL")
with gr.Row():
input_audio_yt = gr.Audio(label="Source Audio (Do not put when using YouTube URL)")
reference_audio_yt = gr.Audio(label="Reference Style Audio (Do not put when using YouTube URL)")
process_button_yt = gr.Button("Process Mastering Style Transfer")
with gr.Row():
output_audio_yt = gr.Audio(label="Output Audio", type='numpy')
param_output_yt = gr.Textbox(label="Predicted Parameters", lines=5)
error_message_yt = gr.Textbox(label="Error Message", visible=False)
def process_and_handle_errors(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
result = process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url)
if len(result) == 3 and isinstance(result[2], str): # Error occurred
return None, None, gr.update(visible=True, value=result[2])
return result[0], result[1], gr.update(visible=False, value="")
process_button_yt.click(
process_and_handle_errors,
inputs=[input_audio_yt, input_youtube_url, reference_audio_yt, reference_youtube_url],
outputs=[output_audio_yt, param_output_yt, error_message_yt]
)
gr.Markdown("## Step 2: Inference Time Optimization (ITO)")
with gr.Row():
ito_reference_audio = gr.Audio(label="ITO Reference Style Audio $x'_{ref}$ (optional)")
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Steps for additional optimization")
optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
loss_function = gr.Radio(["AudioFeatureLoss", "CLAPFeatureLoss"], label="Loss Function", value="AudioFeatureLoss")
# Audio Feature Loss weights
with gr.Column(visible=True) as audio_feature_weights:
af_weights = gr.Textbox(
label="AudioFeatureLoss Weights (comma-separated)",
value="0.1,0.001,1.0,1.0,0.1",
info="RMS, Crest Factor, Stereo Width, Stereo Imbalance, Bark Spectrum"
)
# CLAP Loss options
with gr.Column(visible=False) as clap_options:
clap_target_type = gr.Radio(["Audio", "Text"], label="CLAP Target Type", value="Audio")
clap_text_prompt = gr.Textbox(label="CLAP Text Prompt", visible=False)
clap_distance_fn = gr.Dropdown(["cosine", "mse", "l1"], label="CLAP Distance Function", value="cosine")
def update_clap_options(loss_function):
if loss_function == "CLAPFeatureLoss":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
loss_function.change(
update_clap_options,
inputs=[loss_function],
outputs=[audio_feature_weights, clap_options]
)
def update_clap_text_prompt(clap_target_type):
return gr.update(visible=clap_target_type == "Text")
clap_target_type.change(
update_clap_text_prompt,
inputs=[clap_target_type],
outputs=[clap_text_prompt]
)
ito_button = gr.Button("Perform ITO")
with gr.Row():
with gr.Column():
ito_output_audio = gr.Audio(label="ITO Output Audio")
ito_step_slider = gr.Slider(minimum=1, maximum=100, step=1, label="ITO Step", interactive=True)
ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=15)
with gr.Column():
ito_loss_plot = gr.LinePlot(
x="step",
y="loss",
title="ITO Loss Curve",
x_title="Step",
y_title="Loss",
height=300,
width=600,
)
ito_log = gr.Textbox(label="ITO Log", lines=10)
all_results = gr.State([])
ito_button.click(
perform_ito,
inputs=[normalized_input, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights, loss_function, clap_target_type, clap_text_prompt, clap_distance_fn],
outputs=[ito_output_audio, ito_param_output, ito_step_slider, ito_log, ito_loss_plot, all_results]
).then(
update_ito_output,
inputs=[all_results, ito_step_slider],
outputs=[ito_output_audio, ito_param_output, ito_log]
)
ito_step_slider.change(
update_ito_output,
inputs=[all_results, ito_step_slider],
outputs=[ito_output_audio, ito_param_output, ito_log]
)
demo.launch()
|