File size: 10,694 Bytes
2e66664
 
 
 
c8618b9
2e66664
 
587b58f
64048e9
76df10e
 
043c2d7
2e66664
c8618b9
459a21c
6d70884
 
 
 
 
1a135ff
6d70884
 
 
 
 
 
d48a45a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9697a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d6c0d5
c13752e
 
2e66664
 
6fc042a
 
e182234
 
 
d48a45a
e182234
 
 
 
e6453cd
 
 
 
043c2d7
 
 
 
 
 
 
 
 
e182234
2e66664
6d6c0d5
 
 
e30570e
6d6c0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
e182234
76df10e
 
6d6c0d5
e182234
 
 
9fc25b1
e182234
 
 
76df10e
043c2d7
d48a45a
3635837
 
 
0a92c9b
 
 
043c2d7
 
 
 
 
 
 
 
f5db6d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a135ff
f5db6d5
 
 
6838a44
f5db6d5
 
2e66664
f5db6d5
 
6838a44
0a8ab10
2e66664
a990e23
 
 
 
bf776b2
a990e23
 
5cb1dd6
e3c9443
6d6c0d5
 
 
 
 
 
 
9697a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6838a44
e182234
 
e3c9443
 
 
e182234
 
 
e3c9443
 
 
 
 
e182234
76df10e
f5db6d5
e3c9443
043c2d7
 
 
 
 
 
9e8da41
043c2d7
 
9fc25b1
e3c9443
f5db6d5
 
07ebfd5
f5db6d5
 
 
 
e30570e
e182234
 
 
f5db6d5
 
 
 
 
 
 
 
 
 
 
e182234
 
6d6c0d5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import gradio as gr
import torch
import soundfile as sf
import numpy as np
import yaml
from inference import MasteringStyleTransfer
from utils import download_youtube_audio
from config import args
import pyloudnorm as pyln
import tempfile
import os
import pandas as pd

mastering_transfer = MasteringStyleTransfer(args)

def denormalize_audio(audio, dtype=np.int16):
    """
    Denormalize the audio from the range [-1, 1] to the full range of the specified dtype.
    """
    if dtype == np.int16:
        audio = np.clip(audio, -1, 1)  # Ensure the input is in the range [-1, 1]
        return (audio * 32767).astype(np.int16)
    elif dtype == np.float32:
        return audio.astype(np.float32)
    else:
        raise ValueError("Unsupported dtype. Use np.int16 or np.float32.")

def loudness_normalize(audio, sample_rate, target_loudness=-12.0):
    # Ensure audio is float32
    if audio.dtype != np.float32:
        audio = audio.astype(np.float32)
    
    # If audio is mono, reshape to (samples, 1)
    if audio.ndim == 1:
        audio = audio.reshape(-1, 1)
    
    meter = pyln.Meter(sample_rate)  # create BS.1770 meter
    loudness = meter.integrated_loudness(audio)
    
    loudness_normalized_audio = pyln.normalize.loudness(audio, loudness, target_loudness)
    return loudness_normalized_audio

def process_youtube_url(url):
    try:
        audio, sr = download_youtube_audio(url)
        return (sr, audio)
    except Exception as e:
        return None, f"Error processing YouTube URL: {str(e)}"

def process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
    if input_youtube_url:
        input_audio, error = process_youtube_url(input_youtube_url)
        if error:
            return None, None, error
    
    if reference_youtube_url:
        reference_audio, error = process_youtube_url(reference_youtube_url)
        if error:
            return None, None, error
    
    if input_audio is None or reference_audio is None:
        return None, None, "Both input and reference audio are required."
    
    return process_audio(input_audio, reference_audio)

def process_audio(input_audio, reference_audio):
    output_audio, predicted_params, sr = mastering_transfer.process_audio(
        input_audio, reference_audio, reference_audio
    )
    
    param_output = mastering_transfer.get_param_output_string(predicted_params)
    
    # Convert output_audio to numpy array if it's a tensor
    if isinstance(output_audio, torch.Tensor):
        output_audio = output_audio.cpu().numpy()

    if output_audio.ndim == 1:
        output_audio = output_audio.reshape(-1, 1)
    elif output_audio.ndim > 2:
        output_audio = output_audio.squeeze()

    # Ensure the audio is in the correct shape (samples, channels)
    if output_audio.shape[1] > output_audio.shape[0]:
        output_audio = output_audio.transpose(1,0)

    print(output_audio.shape)
    print(f"sr: {sr}")

    # Normalize output audio
    output_audio = loudness_normalize(output_audio, sr)    
    # Denormalize the audio to int16
    output_audio = denormalize_audio(output_audio, dtype=np.int16)

    return (sr, output_audio), param_output

def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
    if ito_reference_audio is None:
        ito_reference_audio = reference_audio

    ito_config = {
        'optimizer': optimizer,
        'learning_rate': learning_rate,
        'num_steps': num_steps,
        'af_weights': af_weights,
        'sample_rate': args.sample_rate
    }

    input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate)
    reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate)
    ito_reference_tensor = mastering_transfer.preprocess_audio(ito_reference_audio, args.sample_rate)

    initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)

    ito_log = ""
    loss_values = []
    for log_entry, current_output, current_params, step, loss in mastering_transfer.inference_time_optimization(
        input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
    ):
        ito_log += log_entry
        ito_param_output = mastering_transfer.get_param_output_string(current_params)
        loss_values.append({"step": int(step), "loss": loss})
        
        # Convert current_output to numpy array if it's a tensor
        if isinstance(current_output, torch.Tensor):
            current_output = current_output.cpu().numpy()
                    
        if current_output.ndim == 1:
            current_output = current_output.reshape(-1, 1)
        elif current_output.ndim > 2:
            current_output = current_output.squeeze()
        # Ensure the audio is in the correct shape (samples, channels)
        if current_output.shape[1] > current_output.shape[0]:
            current_output = current_output.transpose(1,0)

        # Loudness normalize output audio
        current_output = loudness_normalize(current_output, args.sample_rate)
        # Denormalize the audio to int16
        current_output = denormalize_audio(current_output, dtype=np.int16)

        yield (args.sample_rate, current_output), ito_param_output, step, ito_log, pd.DataFrame(loss_values)

def run_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
    af_weights = [float(w.strip()) for w in af_weights.split(',')]
    ito_generator = mastering_transfer.inference_time_optimization(
        input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights
    )
    
    all_results = []
    for result in ito_generator:
        all_results.append(result)
    
    min_loss_step = min(range(len(all_results)), key=lambda i: all_results[i]['loss'])
    
    loss_df = pd.DataFrame([(r['step'], r['loss']) for r in all_results], columns=['step', 'loss'])
    
    return all_results, min_loss_step, loss_df

def update_ito_output(all_results, selected_step):
    selected_result = all_results[selected_step]
    return (args.sample_rate, selected_result['audio']), selected_result['params'], selected_result['log']


""" APP display """
with gr.Blocks() as demo:
    gr.Markdown("# ITO-Master: Inference Time Optimization for Mastering Style Transfer")

    gr.Markdown("# Step 1: Mastering Style Transfer")

    with gr.Tab("Upload Audio"):
        with gr.Row():
            input_audio = gr.Audio(label="Input Audio")
            reference_audio = gr.Audio(label="Reference Audio")
        
        process_button = gr.Button("Process Mastering Style Transfer")
        
        with gr.Row():
            output_audio = gr.Audio(label="Output Audio", type='numpy')
            param_output = gr.Textbox(label="Predicted Parameters", lines=5)

        process_button.click(
            process_audio, 
            inputs=[input_audio, reference_audio], 
            outputs=[output_audio, param_output]
        )

    with gr.Tab("YouTube Audio"):
        with gr.Row():
            input_audio_yt = gr.Audio(label="Input Audio (Optional)")
            input_youtube_url = gr.Textbox(label="Input YouTube URL (Optional)")
        with gr.Row():
            reference_audio_yt = gr.Audio(label="Reference Audio (Optional)")
            reference_youtube_url = gr.Textbox(label="Reference YouTube URL (Optional)")
        
        process_button_yt = gr.Button("Process Mastering Style Transfer")
        
        with gr.Row():
            output_audio_yt = gr.Audio(label="Output Audio", type='numpy')
            param_output_yt = gr.Textbox(label="Predicted Parameters", lines=5)
        
        error_message_yt = gr.Textbox(label="Error Message", visible=False)

        def process_and_handle_errors(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
            result = process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url)
            if len(result) == 3 and isinstance(result[2], str):  # Error occurred
                return None, None, gr.update(visible=True, value=result[2])
            return result[0], result[1], gr.update(visible=False, value="")

        process_button_yt.click(
            process_and_handle_errors, 
            inputs=[input_audio_yt, input_youtube_url, reference_audio_yt, reference_youtube_url], 
            outputs=[output_audio_yt, param_output_yt, error_message_yt]
        )

    gr.Markdown("## Step 2: Inference Time Optimization (ITO)")
    
    with gr.Row():
        ito_reference_audio = gr.Audio(label="ITO Reference Audio (optional)")
        with gr.Column():
            num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Steps")
            optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
            learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
            af_weights = gr.Textbox(label="AudioFeatureLoss Weights (comma-separated)", value="0.1,0.001,1.0,1.0,0.1")
        
    ito_button = gr.Button("Perform ITO")

    with gr.Row():
        with gr.Column():
            ito_output_audio = gr.Audio(label="ITO Output Audio")
            ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=15)
            ito_step_slider = gr.Slider(minimum=1, maximum=100, step=1, label="ITO Step", interactive=True)
        with gr.Column():
            ito_loss_plot = gr.LinePlot(
                x="step",
                y="loss",
                title="ITO Loss Curve",
                x_title="Step",
                y_title="Loss",
                height=300,
                width=600,
            )
            ito_log = gr.Textbox(label="ITO Log", lines=10)

    all_results = gr.State([])
    min_loss_step = gr.State(0)

    def on_ito_complete(results, min_step, loss_df):
        all_results.value = results
        min_loss_step.value = min_step
        return loss_df, gr.update(maximum=len(results), value=min_step+1)

    ito_button.click(
        run_ito,
        inputs=[input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights],
        outputs=[all_results, min_loss_step, ito_loss_plot, ito_step_slider]
    ).then(
        update_ito_output,
        inputs=[all_results, ito_step_slider],
        outputs=[ito_output_audio, ito_param_output, ito_log]
    )

    ito_step_slider.change(
        update_ito_output,
        inputs=[all_results, ito_step_slider],
        outputs=[ito_output_audio, ito_param_output, ito_log]
    )

demo.launch()