File size: 8,564 Bytes
7cd710e 39b15f4 7cd710e 39b15f4 7cd710e 39b15f4 7cd710e 39b15f4 7cd710e 39b15f4 7cd710e 39b15f4 7cd710e 39b15f4 7cd710e 0910acf 39b15f4 7cd710e 3faca10 a39a042 3faca10 39b15f4 ffaceea 39b15f4 7cd710e a39a042 39b15f4 a39a042 39b15f4 a39a042 39b15f4 7cd710e a39a042 39b15f4 a39a042 39b15f4 a39a042 39b15f4 0910acf 39b15f4 a39a042 39b15f4 a39a042 39b15f4 a39a042 39b15f4 ffaceea 39b15f4 a39a042 39b15f4 a39a042 39b15f4 a39a042 39b15f4 0910acf 7cd710e 39b15f4 7cd710e 39b15f4 7cd710e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import matplotlib
matplotlib.use('Agg')
import functools
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
FIGURE_PATH = "plt.png"
FIG_DPI = 300
def get_plot(task, gpu, omit_offload):
# slice the dataframe according to the inputs
df = pd.read_csv("data.csv")
df = df[df["task"] == task]
df = df[df["gpu"] == gpu]
if omit_offload == "Yes":
df = df[df["offload"] == 0]
# combine model name and dtype
df["model and dtype"] = df['model_name'].str.cat(df[['dtype']], sep=', ')
# fuse the two columns to be compared (original and assisted generation)
df = df.melt(
id_vars=["task", "gpu", "model and dtype", "offload"],
value_vars=["Greedy", "Assisted"],
var_name="generation_type",
value_name="generation_time",
)
g = sns.catplot(
data=df,
kind="bar",
x="model and dtype",
y="generation_time",
hue="generation_type",
palette={"Greedy": "blue", "Assisted": "orange"},
alpha=.9,
)
g.despine(left=True)
g.set_axis_labels("Model size and dtype", "Latency (ms/token)")
g.set_xticklabels(fontsize=7)
g.set_yticklabels(fontsize=7)
g.legend.set_title("Generation Type")
plt.setp(g._legend.get_texts(), fontsize='7') # for legend text
# Add the number to the top of each bar
ax = g.facet_axis(0, 0)
for i in ax.containers:
ax.bar_label(i, fontsize=7)
plt.savefig(FIGURE_PATH, dpi=FIG_DPI)
return FIGURE_PATH
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Assisted Generation Benchmark
"""
)
# components shared across tabs
omit_offload_fn = functools.partial(
gr.Radio, ["Yes", "No"], value="No", label="Omit cases with memory offload?", interactive=True
)
def gpu_selector_fn(gpu_list):
return gr.Dropdown(
gpu_list, value=gpu_list[-1], label="GPU", interactive=True
)
with gr.Tabs():
with gr.TabItem("OPT: Open"):
plot_fn = functools.partial(get_plot, "OPT: Open Text Generation")
with gr.Row():
with gr.Column():
gpu_selector = gpu_selector_fn(["3090", "T4", "T4 *2", "A100 (80GB)"])
with gr.Column():
omit_offload = omit_offload_fn()
# Show plot when the gradio app is initialized
plot = gr.Image(value=plot_fn("A100 (80GB)", "No"))
gr.Markdown(
"""
### Assistant Model
- `facebook/opt-125m`
### Model Names:
- 1.3B: `facebook/opt-1.3b`
- 6.7B: `facebook/opt-6.7b`
- 30B: `facebook/opt-30b`
- 66B: `facebook/opt-66b`
### Dataset used as input prompt:
- C4 (en, validation set)
"""
)
# Update plot when any of the inputs change
plot_inputs = [gpu_selector, omit_offload]
gpu_selector.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
omit_offload.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
with gr.TabItem("OPT: Summ"):
plot_fn = functools.partial(get_plot, "OPT: Summarization")
with gr.Row():
with gr.Column():
gpu_selector = gpu_selector_fn(["3090", "T4", "T4 *2", "A100 (80GB)"])
with gr.Column():
omit_offload = omit_offload_fn()
# Show plot when the gradio app is initialized
plot = gr.Image(value=plot_fn("A100 (80GB)", "No"))
gr.Markdown(
"""
### Assistant Model
- `facebook/opt-125m`
### Model Names:
- 1.3B: `facebook/opt-1.3b`
- 6.7B: `facebook/opt-6.7b`
- 30B: `facebook/opt-30b`
- 66B: `facebook/opt-66b`
### Dataset used as input prompt:
- CNN Dailymail (3.0.0, validation set)
"""
)
# Update plot when any of the inputs change
plot_inputs = [gpu_selector, omit_offload]
gpu_selector.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
omit_offload.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
with gr.TabItem("Whisper: ARS"):
plot_fn = functools.partial(get_plot, "Whisper: ARS")
with gr.Row():
with gr.Column():
gpu_selector = gpu_selector_fn(["3090", "T4"])
with gr.Column():
omit_offload = omit_offload_fn()
# Show plot when the gradio app is initialized
plot = gr.Image(value=plot_fn("T4", "No"))
gr.Markdown(
"""
### Assistant Model
- `openai/whisper-tiny`
### Model Names:
- large-v2: `openai/whisper-large-v2`
### Dataset used as input prompt:
- Librispeech ARS (clean, validation set)
"""
)
# Update plot when any of the inputs change
plot_inputs = [gpu_selector, omit_offload]
gpu_selector.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
omit_offload.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
with gr.TabItem("CodeGen: Code"):
plot_fn = functools.partial(get_plot, "CodeGen: Code Generation")
with gr.Row():
with gr.Column():
gpu_selector = gpu_selector_fn(["3090", "T4", "T4 *2", "A100 (80GB)"])
with gr.Column():
omit_offload = omit_offload_fn()
# Show plot when the gradio app is initialized
plot = gr.Image(value=plot_fn("A100 (80GB)", "No"))
gr.Markdown(
"""
### Assistant Model
- `Salesforce/codegen-350M-mono`
### Model Names:
- 2B: `Salesforce/codegen-2B-mono`
- 6B: `Salesforce/codegen-6B-mono`
- 16B: `Salesforce/codegen-16B-mono`
### Dataset used as input prompt:
- The Stack (python)
"""
)
# Update plot when any of the inputs change
plot_inputs = [gpu_selector, omit_offload]
gpu_selector.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
omit_offload.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
with gr.TabItem("Flan-T5: Summ"):
plot_fn = functools.partial(get_plot, "Flan-T5: Summarization")
with gr.Row():
with gr.Column():
gpu_selector = gpu_selector_fn(["3090", "T4", "T4 *2", "A100 (80GB)"])
with gr.Column():
omit_offload = omit_offload_fn()
# Show plot when the gradio app is initialized
plot = gr.Image(value=plot_fn("A100 (80GB)", "No"))
gr.Markdown(
"""
### Assistant Model
- `google/flan-t5-small`
### Model Names:
- large: `google/flan-t5-large`
- xl: `google/flan-t5-xl`
- xxl: `google/flan-t5-xxl`
- ul2: `google/flan-ul2`
### Dataset used as input prompt:
- CNN Dailymail (3.0.0, validation set)
"""
)
# Update plot when any of the inputs change
plot_inputs = [gpu_selector, omit_offload]
gpu_selector.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
omit_offload.change(fn=plot_fn, inputs=plot_inputs, outputs=plot)
with gr.TabItem("Benchmark Info"):
gr.Dataframe(
headers=["Parameter", "Value"],
value=[
["Transformers Version", "4.29dev0"],
["Pytorch Version", "2.0.0"],
["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"],
["CUDA", "11.8 (3090) / 11.3 (others GPUs)"],
["Number of input samples", "20-100 (depending on the model size)"],
["Is there code to reproduce?", "Yes -- https://github.com/gante/huggingface-demos/tree/main/experiments/faster_generation"],
],
)
demo.launch()
|