Spaces:
Runtime error
Runtime error
File size: 5,853 Bytes
212a8e9 0736615 212a8e9 6a39113 0736615 212a8e9 9d4511f 0736615 212a8e9 9d4511f 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 7d663d0 6a39113 212a8e9 3a2a2ed 212a8e9 9d4511f 2afab11 6a39113 2afab11 6a39113 2afab11 6a39113 2afab11 6a39113 9d4511f 6a39113 9d4511f 212a8e9 3a2a2ed 6a39113 212a8e9 6a39113 9d4511f 6a39113 3a2a2ed 9d4511f 212a8e9 9d4511f 212a8e9 6a39113 212a8e9 6a39113 212a8e9 6a39113 212a8e9 0736615 212a8e9 9d4511f 6a39113 212a8e9 0736615 212a8e9 3a2a2ed 212a8e9 2afab11 212a8e9 3a2a2ed 212a8e9 0736615 212a8e9 6a39113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import evaluate
import json
import sys
from pathlib import Path
import gradio as gr
import numpy as np
import pandas as pd
import ast
# from ece import ECE # loads local instead
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
"""
import seaborn as sns
sns.set_style('white')
sns.set_context("paper", font_scale=1)
"""
# plt.rcParams['figure.figsize'] = [10, 7]
plt.rcParams["figure.dpi"] = 300
plt.switch_backend(
"agg"
) # ; https://stackoverflow.com/questions/14694408/runtimeerror-main-thread-is-not-in-main-loop
sliders = [
gr.Slider(0, 100, value=10, label="n_bins"),
gr.Slider(
0, 100, value=None, label="bin_range", visible=False
), # DEV: need to have a double slider
gr.Dropdown(choices=["equal-range", "equal-mass"], value="equal-range", label="scheme"),
gr.Dropdown(choices=["upper-edge", "center"], value="upper-edge", label="proxy"),
gr.Dropdown(choices=[1, 2, np.inf], value=1, label="p"),
]
slider_defaults = [slider.value for slider in sliders]
# example data
df = dict()
df["predictions"] = [[0.6, 0.2, 0.2], [0, 0.95, 0.05], [0.7, 0.1, 0.2]]
df["references"] = [0, 1, 2]
component = gr.inputs.Dataframe(
headers=["predictions", "references"], col_count=2, datatype="number", type="pandas"
)
component.value = [
[[0.6, 0.2, 0.2], 0],
[[0.7, 0.1, 0.2], 2],
[[0, 0.95, 0.05], 1],
]
sample_data = [[component] + slider_defaults] ##json.dumps(df)
local_path = Path(sys.path[0])
metric = evaluate.load("jordyvl/ece")
# ECE()
# module = evaluate.load("jordyvl/ece")
# launch_gradio_widget(module)
"""l
Switch inputs and compute_fn
"""
def default_plot():
fig = plt.figure()
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
ranged = np.linspace(0, 1, 10)
ax1.plot(
ranged,
ranged,
color="darkgreen",
ls="dotted",
label="Perfect",
)
# Bin differences
ax1.set_ylabel("Conditional Expectation")
ax1.set_ylim([0, 1.05]) # respective to bin range
ax1.set_title("Reliability Diagram")
ax1.set_xlim([-0.05, 1.05]) # respective to bin range
# Bin frequencies
ax2.set_xlabel("Confidence")
ax2.set_ylabel("Count")
ax2.legend(loc="upper left") # , ncol=2
ax2.set_xlim([-0.05, 1.05]) # respective to bin range
return fig, ax1, ax2
def reliability_plot(results):
# DEV: might still need to write tests in case of equal mass binning
# DEV: nicer would be to plot like a polygon
# see: https://github.com/markus93/fit-on-the-test/blob/main/Experiments_Synthetic/binnings.py
def over_under_confidence(results):
colors = []
for j, bin in enumerate(results["y_bar"]):
perfect = results["y_bar"][j]
empirical = results["p_bar"][j]
bin_color = (
"limegreen"
if np.allclose(perfect, empirical)
else "dodgerblue"
if empirical < perfect
else "orangered"
)
colors.append(bin_color)
return colors
fig, ax1, ax2 = default_plot()
# Bin differences
bins_with_left_edge = np.insert(results["y_bar"], 0, 0, axis=0)
B, bins, patches = ax1.hist(
results["y_bar"],
weights=np.nan_to_num(results["p_bar"][:-1], copy=True, nan=0),
bins=bins_with_left_edge,
)
colors = over_under_confidence(results)
for b in range(len(B)):
patches[b].set_facecolor(colors[b]) # color based on over/underconfidence
ax1handles = [
mpatches.Patch(color="orangered", label="Overconfident"),
mpatches.Patch(color="limegreen", label="Perfect", linestyle="dotted"),
mpatches.Patch(color="dodgerblue", label="Underconfident"),
]
# Bin frequencies
anindices = np.where(~np.isnan(results["p_bar"][:-1]))[0]
n_bins = len(results["y_bar"])
bin_freqs = np.zeros(n_bins)
bin_freqs[anindices] = results["bin_freq"]
B, newbins, patches = ax2.hist(
results["y_bar"], weights=bin_freqs, color="midnightblue", bins=bins_with_left_edge
)
acc_plt = ax2.axvline(x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy")
conf_plt = ax2.axvline(
x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
)
ax1.legend(loc="lower right", handles=ax1handles)
ax2.legend(handles=[acc_plt, conf_plt])
ax1.set_xticks(bins_with_left_edge)
ax2.set_xticks(bins_with_left_edge)
plt.tight_layout()
return fig
def compute_and_plot(data, n_bins, bin_range, scheme, proxy, p):
# DEV: check on invalid datatypes with better warnings
if isinstance(data, pd.DataFrame):
data.dropna(inplace=True)
predictions = [
ast.literal_eval(prediction) if not isinstance(prediction, list) else prediction
for prediction in data["predictions"]
]
references = [reference for reference in data["references"]]
results = metric._compute(
predictions,
references,
n_bins=n_bins,
scheme=scheme,
proxy=proxy,
p=p,
detail=True,
)
print(results)
plot = reliability_plot(results)
return results["ECE"], plot
outputs = [gr.outputs.Textbox(label="ECE"), gr.Plot(label="Reliability diagram")]
# outputs[1].value = default_plot().__dict__ #Does not work; yet needs to be JSON encoded
iface = gr.Interface(
fn=compute_and_plot,
inputs=[component] + sliders,
outputs=outputs,
description=metric.info.description,
article=evaluate.utils.parse_readme(local_path / "README.md"),
title=f"Metric: {metric.name}",
# examples=sample_data; # ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
).launch() |