|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
import evaluate |
|
import datasets |
|
from Levenshtein import distance as lev |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:module, |
|
title = {A great new module}, |
|
authors={huggingface, Inc.}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This new module is designed to solve this great ML task and is crafted with a lot of care. |
|
""" |
|
|
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Calculates how good are predictions given some references, using certain scores |
|
Args: |
|
predictions: list of predictions to score. Each predictions |
|
should be a string with tokens separated by spaces. |
|
references: list of reference for each prediction. Each |
|
reference should be a string with tokens separated by spaces. |
|
Returns: |
|
accuracy: description of the first score, |
|
another_score: description of the second score, |
|
Examples: |
|
Examples should be written in doctest format, and should illustrate how |
|
to use the function. |
|
|
|
>>> my_new_module = evaluate.load("my_new_module") |
|
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) |
|
>>> print(results) |
|
{'accuracy': 1.0} |
|
""" |
|
|
|
|
|
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class charmatch(evaluate.Metric): |
|
"""TODO: Short description of my evaluation module.""" |
|
|
|
def _info(self): |
|
|
|
return evaluate.MetricInfo( |
|
|
|
module_type="metric", |
|
description="Charmatch", |
|
citation="", |
|
inputs_description="input expected output", |
|
|
|
features=datasets.Features({ |
|
'inputs': datasets.Sequence(datasets.Value('string')), |
|
'expected': datasets.Sequence(datasets.Value('string')), |
|
'outputs': datasets.Sequence(datasets.Value('string')) |
|
}), |
|
|
|
homepage="http://module.homepage", |
|
|
|
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], |
|
reference_urls=["http://path.to.reference.url/new_module"] |
|
) |
|
|
|
def _download_and_prepare(self, dl_manager): |
|
"""Optional: download external resources useful to compute the scores""" |
|
|
|
pass |
|
|
|
def _compute(inputs, expected, outputs): |
|
def get_score(input, expected, output): |
|
print(input, expected, output) |
|
deduped = {input, expected, output} |
|
if len(deduped) == 1: |
|
return 1.0 |
|
elif len(deduped) == 2: |
|
if expected == output: |
|
return 1.0 |
|
else: |
|
return 0.0 |
|
else: |
|
expected_corrections = lev(input, expected) |
|
distance_to_input = lev(input, output) |
|
distance_to_expected = lev(output, expected) |
|
print(f'dl(s,g): {expected_corrections}\ndl(s,h): {distance_to_input}\ndl(h,g): {distance_to_expected}') |
|
|
|
true_positives = min(expected_corrections, max(0, (expected_corrections + distance_to_input - distance_to_expected))) / 2 |
|
print(f'T: {true_positives}') |
|
|
|
precision = true_positives / distance_to_input |
|
recall = true_positives / expected_corrections |
|
f_05 = (1 + 0.5**2) * (precision * recall) / (0.5**2 * precision + recall) |
|
print(f'P: {precision}\nR: {recall}') |
|
|
|
return f_05 |
|
|
|
avg = sum([get_score(*row) for row in zip(inputs, expected, outputs)]) / len(inputs) * 100 |
|
|
|
return { |
|
"fscore": avg |
|
} |
|
|