Spaces:
Runtime error
Runtime error
File size: 7,265 Bytes
4347fc3 d47f0a9 a16f7a6 0f9f66b 4347fc3 8c184f4 4347fc3 a426c90 4347fc3 a426c90 4347fc3 2a4bd0a 4347fc3 6dee263 a426c90 3f788ef a426c90 c185595 4347fc3 a426c90 def48ab f2b3196 7a3450e 3f788ef f7614f0 3f788ef a426c90 1904fbf a426c90 3f788ef 4347fc3 266a83c 5ad9951 7764300 8e430df 4347fc3 f2b3196 4347fc3 7a3450e a426c90 4347fc3 d6f2aad 4347fc3 60af39a ef61173 60af39a ef61173 60af39a ef61173 60af39a 4347fc3 3b15df8 a16f7a6 a426c90 a16f7a6 3f788ef f2b3196 4347fc3 3b15df8 d6f2aad 3b15df8 4347fc3 60af39a 4347fc3 266a83c 4347fc3 266a83c 9bb9ba9 4347fc3 266a83c 4347fc3 266a83c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import streamlit as st
import pickle
import pandas as pd
import numpy as np
import random
import torch
from matplotlib.backends.backend_agg import RendererAgg
from backend.disentangle_concepts import *
import torch_utils
import dnnlib
import legacy
_lock = RendererAgg.lock
st.set_page_config(layout='wide')
BACKGROUND_COLOR = '#bcd0e7'
SECONDARY_COLOR = '#bce7db'
st.title('Disentanglement studies on the Oxford Vases Dataset')
st.markdown(
"""
This is a demo of the Disentanglement studies on the [Oxford Vases Dataset](https://www.robots.ox.ac.uk/~vgg/data/oxbuildings/).
""",
unsafe_allow_html=False,)
annotations_file = './data/vase_annotated_files/seeds0000-20000.pkl'
with open(annotations_file, 'rb') as f:
annotations = pickle.load(f)
if 'image_id' not in st.session_state:
st.session_state.image_id = 0
if 'concept_ids' not in st.session_state:
st.session_state.concept_ids =['AMPHORA']
if 'space_id' not in st.session_state:
st.session_state.space_id = 'W'
# def on_change_random_input():
# st.session_state.image_id = st.session_state.image_id
# ----------------------------- INPUT ----------------------------------
st.header('Input')
input_col_1, input_col_2, input_col_3 = st.columns(3)
# --------------------------- INPUT column 1 ---------------------------
with input_col_1:
with st.form('text_form'):
# image_id = st.number_input('Image ID: ', format='%d', step=1)
st.write('**Choose two options to disentangle**')
type_col = st.selectbox('Concept category:', tuple(['Provenance', 'Shape Name', 'Fabric', 'Technique']))
ann_df = pd.read_csv(f'./data/vase_annotated_files/sim_{type_col}_seeds0000-20000.csv')
labels = list(ann_df.columns)
labels.remove('ID')
labels.remove('Unnamed: 0')
concept_ids = st.multiselect('Concepts:', tuple(labels), max_selections=2, default=[labels[2], labels[3]])
st.write('**Choose a latent space to disentangle**')
space_id = st.selectbox('Space:', tuple(['W', 'Z']))
choose_text_button = st.form_submit_button('Choose the defined concept and space to disentangle')
if choose_text_button:
concept_ids = list(concept_ids)
st.session_state.concept_ids = concept_ids
space_id = str(space_id)
st.session_state.space_id = space_id
# st.write(image_id, st.session_state.image_id)
# ---------------------------- SET UP OUTPUT ------------------------------
epsilon_container = st.empty()
st.header('Output')
st.subheader('Concept vector')
# perform attack container
# header_col_1, header_col_2, header_col_3, header_col_4, header_col_5 = st.columns([1,1,1,1,1])
# output_col_1, output_col_2, output_col_3, output_col_4, output_col_5 = st.columns([1,1,1,1,1])
header_col_1, header_col_2 = st.columns([5,1])
output_col_1, output_col_2 = st.columns([5,1])
st.subheader('Derivations along the concept vector')
# prediction error container
error_container = st.empty()
smoothgrad_header_container = st.empty()
# smoothgrad container
smooth_head_1, smooth_head_2, smooth_head_3, smooth_head_4, smooth_head_5 = st.columns([1,1,1,1,1])
smoothgrad_col_1, smoothgrad_col_2, smoothgrad_col_3, smoothgrad_col_4, smoothgrad_col_5 = st.columns([1,1,1,1,1])
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
with output_col_1:
separation_vector, number_important_features, imp_nodes, performance = get_separation_space(concept_ids, annotations, ann_df, latent_space=st.session_state.space_id, samples=150)
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
st.write('Concept vector', separation_vector)
header_col_1.write(f'Concept {st.session_state.concept_ids} - Space {st.session_state.space_id} - Number of relevant nodes: {number_important_features} - Val classification performance: {performance}')# - Nodes {",".join(list(imp_nodes))}')
# ----------------------------- INPUT column 2 & 3 ----------------------------
with input_col_2:
with st.form('image_form'):
# image_id = st.number_input('Image ID: ', format='%d', step=1)
st.write('**Choose or generate a random image to test the disentanglement**')
chosen_image_id_input = st.empty()
image_id = chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
choose_image_button = st.form_submit_button('Choose the defined image')
random_id = st.form_submit_button('Generate a random image')
if random_id:
image_id = random.randint(0, 20000)
st.session_state.image_id = image_id
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
if choose_image_button:
image_id = int(image_id)
st.session_state.image_id = int(image_id)
# st.write(image_id, st.session_state.image_id)
with input_col_3:
with st.form('Variate along the disentangled concept'):
st.write('**Set range of change**')
chosen_epsilon_input = st.empty()
epsilon = chosen_epsilon_input.number_input('Lambda:', min_value=1, step=1)
epsilon_button = st.form_submit_button('Choose the defined lambda')
st.write('**Select hierarchical levels to manipulate**')
layers = st.multiselect('Layers:', tuple(range(14)))
if len(layers) == 0:
layers = None
print(layers)
layers_button = st.form_submit_button('Choose the defined layers')
# ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------
#model = torch.load('./data/model_files/pytorch_model.bin', map_location=torch.device('cpu'))
with dnnlib.util.open_url('./data/vase_model_files/network-snapshot-003800.pkl') as f:
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore
if st.session_state.space_id == 'Z':
original_image_vec = annotations['z_vectors'][st.session_state.image_id]
else:
original_image_vec = annotations['w_vectors'][st.session_state.image_id]
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
top_pred = ann_df.loc[st.session_state.image_id, labels].astype(float).idxmax()
# input_image = original_image_dict['image']
# input_label = original_image_dict['label']
# input_id = original_image_dict['id']
with smoothgrad_col_3:
st.image(img)
smooth_head_3.write(f'Base image, predicted as {top_pred}')
images, lambdas = regenerate_images(model, original_image_vec, separation_vector, min_epsilon=-(int(epsilon)), max_epsilon=int(epsilon), latent_space=st.session_state.space_id, layers=layers)
with smoothgrad_col_1:
st.image(images[0])
smooth_head_1.write(f'Change of {np.round(lambdas[0], 2)}')
with smoothgrad_col_2:
st.image(images[1])
smooth_head_2.write(f'Change of {np.round(lambdas[1], 2)}')
with smoothgrad_col_4:
st.image(images[3])
smooth_head_4.write(f'Change of {np.round(lambdas[3], 2)}')
with smoothgrad_col_5:
st.image(images[4])
smooth_head_5.write(f'Change of {np.round(lambdas[4], 2)}')
|