File size: 4,410 Bytes
94b55f0
084583c
94b55f0
602d806
 
89cecf3
3649694
602d806
 
 
5dfd724
9b1e831
9c66171
b9c715a
 
 
 
 
a81536e
b9c715a
9b1e831
 
 
 
 
a81536e
9b1e831
 
 
9c66171
602d806
b5297f4
0d01d71
9c66171
 
 
 
 
602d806
 
9b1e831
602d806
 
 
9b1e831
0d01d71
9b1e831
0d01d71
 
 
 
 
 
602d806
 
0d01d71
ec28a2a
 
 
 
 
 
 
 
602d806
0d01d71
ec28a2a
602d806
0d01d71
 
ec28a2a
0d01d71
ec28a2a
 
 
d546c80
9b1e831
 
 
 
 
602d806
 
 
654c2e1
602d806
9b1e831
602d806
a2d6d06
602d806
 
9c66171
602d806
 
 
 
0d01d71
602d806
dad1e49
d546c80
 
0d01d71
5923654
0d01d71
f700076
9357d80
 
 
0d01d71
 
 
 
 
602d806
f700076
0d01d71
 
 
602d806
0d01d71
 
 
10278bd
602d806
fa73ad0
0d01d71
 
 
 
 
 
602d806
 
5dfd724
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import spaces

import gradio as gr
import torch

from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm

from colpali_engine.models import ColQwen2, ColQwen2Processor


@spaces.GPU
def install_fa2():
    print("Install FA2")
    os.system("pip install flash-attn --no-build-isolation")
# install_fa2()


model = ColQwen2.from_pretrained(
        "manu/colqwen2-v1.0-alpha",
        torch_dtype=torch.bfloat16,
        device_map="cuda:0",  # or "mps" if on Apple Silicon
        # attn_implementation="flash_attention_2", # should work on A100
    ).eval()
processor = ColQwen2Processor.from_pretrained("manu/colqwen2-v1.0-alpha")



@spaces.GPU
def search(query: str, ds, images, k):

    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    if device != model.device:
        model.to(device)
        
    qs = []
    with torch.no_grad():
        batch_query = processor.process_queries([query]).to(model.device)
        embeddings_query = model(**batch_query)
        qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))

    scores = processor.score(qs, ds, device=device)

    top_k_indices = scores[0].topk(k).indices.tolist()

    results = []
    for idx in top_k_indices:
        results.append((images[idx], f"Page {idx}"))

    return results


def index(files, ds):
    print("Converting files")
    images = convert_files(files)
    print(f"Files converted with {len(images)} images.")
    return index_gpu(images, ds)
    


def convert_files(files):
    images = []
    for f in files:
        images.extend(convert_from_path(f, thread_count=4))

    if len(images) >= 150:
        raise gr.Error("The number of images in the dataset should be less than 150.")
    return images


@spaces.GPU
def index_gpu(images, ds):
    """Example script to run inference with ColPali (ColQwen2)"""

    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    if device != model.device:
        model.to(device)
        
    # run inference - docs
    dataloader = DataLoader(
        images,
        batch_size=4,
        shuffle=False,
        collate_fn=lambda x: processor.process_images(x).to(model.device),
    )

    for batch_doc in tqdm(dataloader):
        with torch.no_grad():
            batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
            embeddings_doc = model(**batch_doc)
        ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
    return f"Uploaded and converted {len(images)} pages", ds, images



with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models (ColQwen2) πŸ“š")
    gr.Markdown("""Demo to test ColQwen2 (ColPali) on PDF documents. 
    ColPali is model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449).

    This demo allows you to upload PDF files and search for the most relevant pages based on your query.
    Refresh the page if you change documents !

    ⚠️ This demo uses a model trained exclusively on A4 PDFs in portrait mode, containing english text. Performance is expected to drop for other page formats and languages.
    Other models will be released with better robustness towards different languages and document formats !
    """)
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("## 1️⃣ Upload PDFs")
            file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")

            convert_button = gr.Button("πŸ”„ Index documents")
            message = gr.Textbox("Files not yet uploaded", label="Status")
            embeds = gr.State(value=[])
            imgs = gr.State(value=[])

        with gr.Column(scale=3):
            gr.Markdown("## 2️⃣ Search")
            query = gr.Textbox(placeholder="Enter your query here", label="Query")
            k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)


    # Define the actions
    search_button = gr.Button("πŸ” Search", variant="primary")
    output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)

    convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
    search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])

if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)