File size: 6,517 Bytes
d7717b4
 
 
 
 
 
 
 
 
 
 
 
 
 
f990557
 
d7717b4
 
f990557
d7717b4
 
 
 
 
f990557
226dd1b
 
d7717b4
5ce59f6
 
ad457bf
226dd1b
7849dfa
5ce59f6
 
 
f9d5aed
5ce59f6
226dd1b
 
7849dfa
5ce59f6
 
 
 
 
 
 
 
 
 
226dd1b
5ce59f6
 
 
ad457bf
292f81f
f990557
292f81f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f990557
4e1803a
 
f990557
4e1803a
94b741a
 
f990557
94b741a
f990557
94b741a
399e950
94b741a
399e950
94b741a
399e950
94b741a
399e950
94b741a
399e950
94b741a
399e950
94b741a
399e950
94b741a
399e950
94b741a
399e950
 
94b741a
399e950
292f81f
d7717b4
bbe236d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import streamlit as st
import pickle
import pandas as pd
from catboost import CatBoostClassifier

# Load the trained model and unique values from the pickle file
with open('model_and_key_components.pkl', 'rb') as file:
    saved_components = pickle.load(file)

model = saved_components['model']
unique_values = saved_components['unique_values']

# Define the Streamlit app
def main():
    st.title("Employee Attrition Prediction App πŸ•΅οΈβ€β™‚οΈ")
    st.sidebar.title("Model Settings βš™οΈ")

    # Sidebar inputs
    with st.sidebar.expander("View Unique Values πŸ”"):
        st.write("Unique values for each feature:")
        for column, values in unique_values.items():
            st.write(f"- {column}: {values}")

    # Main content
    st.write("Welcome to the Employee Attrition Prediction App! πŸš€")
    st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
    st.write("Please provide the following information to make a prediction:")

    # Define layout with three columns
    col1, col2, col3 = st.columns(3)

    # Column 1
    with col1:
        age = st.number_input("Age", min_value=18, max_value=70)
        monthly_income = st.number_input("Monthly Income")
        num_companies_worked = st.number_input("Number of Companies Worked")
        percent_salary_hike = st.number_input("Percent Salary Hike", min_value=0, max_value=25)
        training_times_last_year = st.number_input("Training Times Last Year", min_value=0, max_value=6)

    # Column 2
    with col2:
        department = st.selectbox("Department", ['Sales', 'Research & Development', 'Human Resources'])
        environment_satisfaction = st.selectbox("Environment Satisfaction", [1, 2, 3, 4])
        job_role = st.selectbox("Job Role", ['Sales Executive', 'Research Scientist', 'Laboratory Technician',
                                              'Manufacturing Director', 'Healthcare Representative', 'Manager',
                                              'Sales Representative', 'Research Director', 'Human Resources'])
        job_satisfaction = st.selectbox("Job Satisfaction", [1, 2, 3, 4])
        work_life_balance = st.selectbox("Work Life Balance", [1, 2, 3, 4])

    # Column 3
    with col3:
        over_time = st.checkbox("Over Time")
        relationship_satisfaction = st.selectbox("Relationship Satisfaction", [1, 2, 3, 4])
        years_since_last_promotion = st.number_input("Years Since Last Promotion")
        years_with_curr_manager = st.number_input("Years With Current Manager")

    # Predict button
    if st.button("Predict πŸ“Š"):

        # Create a DataFrame to hold the user input data
        input_data = pd.DataFrame({
            'Age': [age],
            'Department': [department],
            'EnvironmentSatisfaction': [environment_satisfaction],
            'JobRole': [job_role],
            'JobSatisfaction': [job_satisfaction],
            'MonthlyIncome': [monthly_income],
            'NumCompaniesWorked': [num_companies_worked],
            'OverTime': [over_time],
            'PercentSalaryHike': [percent_salary_hike],
            'RelationshipSatisfaction': [relationship_satisfaction],
            'TrainingTimesLastYear': [training_times_last_year],
            'WorkLifeBalance': [work_life_balance],
            'YearsSinceLastPromotion': [years_since_last_promotion],
            'YearsWithCurrManager': [years_with_curr_manager]
        })

        # Reorder columns to match the expected order
        input_data = input_data[['Age', 'Department', 'EnvironmentSatisfaction', 'JobRole', 'JobSatisfaction',
                                 'MonthlyIncome', 'NumCompaniesWorked', 'OverTime', 'PercentSalaryHike',
                                 'RelationshipSatisfaction', 'TrainingTimesLastYear', 'WorkLifeBalance',
                                 'YearsSinceLastPromotion', 'YearsWithCurrManager']]

        # Make predictions
        prediction = model.predict(input_data)
        probability = model.predict_proba(input_data)[:, 1]
        
        # Display prediction probability
        if prediction[0] == 1:
            st.subheader("Prediction Probability πŸ“ˆ")
            st.write(f"The probability of the employee leaving is: {probability[0]*100:.2f}%")
        
        # Display characteristic-based recommendations
        st.subheader("Recommendations for Retaining The Employee πŸ’‘:")
        if job_satisfaction == 1 or environment_satisfaction == 1:
            st.markdown("- **Job and Environment Satisfaction**: Enhance job and environment satisfaction through initiatives such as recognition programs and improving workplace conditions.")
        if years_since_last_promotion > 5:
            st.markdown("- Implement a transparent promotion policy and provide opportunities for career advancement.")
        if years_with_curr_manager > 5:
            st.markdown("- Offer opportunities for a change in reporting structure to prevent stagnation and promote growth.")
        if percent_salary_hike < 5:
            st.markdown("- Consider adjusting salary and benefits packages to remain competitive and reward employee loyalty.")
        if training_times_last_year < 2:
            st.markdown("- Invest in employee development through training programs and continuous learning opportunities.")
        if over_time:
            st.markdown("- Evaluate workload distribution and consider implementing measures to prevent overwork, such as workload balancing and flexible scheduling.")
        if relationship_satisfaction == 1:
            st.markdown("- Foster positive relationships and a supportive work environment through team-building activities and open communication channels.")
        if monthly_income < 5000:
            st.markdown("- Review compensation structures and adjust salaries to align with industry standards and employee expectations.")
        if num_companies_worked > 5:
            st.markdown("- Identify reasons for high turnover and address issues related to job stability, career progression, and organizational culture.")
        if work_life_balance == 1:
            st.markdown("- Promote work-life balance initiatives, such as flexible work arrangements and wellness programs, to support employee well-being.")

        # General recommendation for all negative predictions
        st.markdown("- Conduct exit interviews to gather feedback and identify areas for improvement in retention strategies.")

if __name__ == "__main__":
    main()