File size: 15,601 Bytes
3133607
 
e687873
 
3133607
 
 
e687873
 
 
 
 
 
 
3133607
a82292e
e687873
a82292e
 
 
 
 
e687873
 
 
 
 
 
 
 
 
 
 
 
 
7539cd7
 
 
 
e687873
 
 
 
 
 
 
 
 
 
 
3133607
 
ed887b5
3133607
 
 
 
 
 
 
 
 
 
 
 
 
463628a
3133607
ec4b6dd
ff8646c
ec4b6dd
b60b62e
3133607
ec4b6dd
 
 
3133607
b60b62e
3133607
613b9d6
3133607
 
b10609f
ec4b6dd
 
 
1e84a23
3133607
 
1e84a23
3133607
d17b45e
1e84a23
3133607
b60b62e
1e84a23
3133607
 
f5b8f7d
3133607
 
 
1e84a23
c8c8da6
1e84a23
69be8e7
1e84a23
3133607
 
 
ec4b6dd
 
b60b62e
1e84a23
ec4b6dd
 
 
 
 
 
 
1e84a23
 
3133607
 
 
 
 
ec4b6dd
 
 
 
 
 
 
b60b62e
3133607
ec4b6dd
 
 
 
 
3133607
b60b62e
3133607
 
ed887b5
1e84a23
df7706d
3133607
1e84a23
7841d7b
b60b62e
 
7841d7b
29acedf
999804f
7841d7b
1075488
8c43a69
a040500
 
fdbcc8f
7841d7b
7ecf09d
a040500
3133607
a040500
29acedf
1e84a23
29acedf
0a52ae1
3133607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed887b5
29acedf
 
cce313d
29acedf
3133607
29acedf
3133607
29acedf
 
 
 
 
956be8e
29acedf
4c0982a
0a52ae1
29acedf
 
a040500
b60b62e
1e84a23
5e976a2
 
 
29acedf
1e84a23
3133607
1e84a23
956be8e
3133607
 
b60b62e
956be8e
3133607
 
 
1e84a23
956be8e
 
 
 
b60b62e
1e84a23
3133607
46e3cad
3133607
ec4b6dd
956be8e
 
 
 
 
 
 
 
 
 
 
d699c21
956be8e
d699c21
ed887b5
46e3cad
3133607
 
46e3cad
b20e381
956be8e
ad565e3
956be8e
1e84a23
b60b62e
3133607
b60b62e
3133607
6b31cfd
 
 
 
3133607
 
6b31cfd
b60b62e
3133607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7539cd7
 
 
 
3133607
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
<div align="center">
<p>
   <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
   <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
   <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
   <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
   <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
   <br>
   <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
   <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
   <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>

<br>
<p>
YOLOv5 πŸš€ is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
 open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>

<div align="center">
   <a href="https://github.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.linkedin.com/company/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://twitter.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.producthunt.com/@glenn_jocher">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://youtube.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.facebook.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.instagram.com/ultralytics/">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
   </a>
</div>

<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->

</div>

## <div align="center">Documentation</div>

See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.

## <div align="center">Quick Start Examples</div>

<details open>
<summary>Install</summary>

Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.7.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).

```bash
git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install
```

</details>

<details open>
<summary>Inference</summary>

Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).

```python
import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5l, yolov5x, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
```

</details>



<details>
<summary>Inference with detect.py</summary>

`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.

```bash
python detect.py --source 0  # webcam
                          img.jpg  # image
                          vid.mp4  # video
                          path/  # directory
                          path/*.jpg  # glob
                          'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                          'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
```

</details>

<details>
<summary>Training</summary>

The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.

```bash
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
                                       yolov5s                                64
                                       yolov5m                                40
                                       yolov5l                                24
                                       yolov5x                                16
```

<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">

</details>

<details open>
<summary>Tutorials</summary>

* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; πŸš€ RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)&nbsp; ☘️
  RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)&nbsp; 🌟 NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
* [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) πŸš€
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)

</details>

## <div align="center">Environments</div>

Get started in seconds with our verified environments. Click each icon below for details.

<div align="center">
    <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
    </a>
    <a href="https://www.kaggle.com/ultralytics/yolov5">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
    </a>
    <a href="https://hub.docker.com/r/ultralytics/yolov5">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
    </a>
    <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
    </a>
    <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
    </a>
</div>

## <div align="center">Integrations</div>

<div align="center">
    <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
    </a>
    <a href="https://roboflow.com/?ref=ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
    </a>
</div>

|Weights and Biases|Roboflow ⭐ NEW|
|:-:|:-:|
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |


<!-- ## <div align="center">Compete and Win</div>

We are super excited about our first-ever Ultralytics YOLOv5 πŸš€ EXPORT Competition with **$10,000** in cash prizes!

<p align="center">
  <a href="https://github.com/ultralytics/yolov5/discussions/3213">
  <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
</p> -->

## <div align="center">Why YOLOv5</div>

<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136901921-abcfcd9d-f978-4942-9b97-0e3f202907df.png"></p>
<details>
  <summary>YOLOv5-P5 640 Figure (click to expand)</summary>

<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136763877-b174052b-c12f-48d2-8bc4-545e3853398e.png"></p>
</details>
<details>
  <summary>Figure Notes (click to expand)</summary>

* **COCO AP val** denotes [email protected]:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
* **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
* **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>

### Pretrained Checkpoints

[assets]: https://github.com/ultralytics/yolov5/releases

[TTA]: https://github.com/ultralytics/yolov5/issues/303

|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
|---                    |---  |---    |---    |---    |---    |---    |---    |---
|[YOLOv5n][assets]      |640  |28.4   |46.0   |**45** |**6.3**|**0.6**|**1.9**|**4.5**
|[YOLOv5s][assets]      |640  |37.2   |56.0   |98     |6.4    |0.9    |7.2    |16.5
|[YOLOv5m][assets]      |640  |45.2   |63.9   |224    |8.2    |1.7    |21.2   |49.0
|[YOLOv5l][assets]      |640  |48.8   |67.2   |430    |10.1   |2.7    |46.5   |109.1
|[YOLOv5x][assets]      |640  |50.7   |68.9   |766    |12.1   |4.8    |86.7   |205.7
|                       |     |       |       |       |       |       |       |
|[YOLOv5n6][assets]     |1280 |34.0   |50.7   |153    |8.1    |2.1    |3.2    |4.6
|[YOLOv5s6][assets]     |1280 |44.5   |63.0   |385    |8.2    |3.6    |12.6   |16.8
|[YOLOv5m6][assets]     |1280 |51.0   |69.0   |887    |11.1   |6.8    |35.7   |50.0
|[YOLOv5l6][assets]     |1280 |53.6   |71.6   |1784   |15.8   |10.5   |76.7   |111.4
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |54.7<br>**55.4** |**72.4**<br>72.3 |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-

<details>
  <summary>Table Notes (click to expand)</summary>

* All checkpoints are trained to 300 epochs with default settings and hyperparameters.
* **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`

</details>

## <div align="center">Contribute</div>

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!

<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a>

## <div align="center">Contact</div>

For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).

<br>

<div align="center">
    <a href="https://github.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.linkedin.com/company/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://twitter.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.producthunt.com/@glenn_jocher">
    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://youtube.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.facebook.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.instagram.com/ultralytics/">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
    </a>
</div>