Spaces:
Sleeping
Sleeping
File size: 21,083 Bytes
8abcf2d ef8c30b 834b1c6 4db8e8b 8abcf2d ef8c30b d65669a bf52501 d65669a 5d70faf bf52501 5d70faf 3951475 bf52501 3951475 dcb01bb bf52501 dcb01bb d65669a dcb01bb 60517f0 e16200c 60517f0 ef8c30b 17b30ef 44de952 fc57cfc 44de952 fc57cfc 44de952 fc57cfc 44de952 58b581f 44de952 58b581f 44de952 58b581f 44de952 58b581f 44de952 58b581f 44de952 8a25635 dcb01bb 4ed6358 2beb7b1 4ed6358 dcb01bb 4ed6358 2beb7b1 d65669a 2beb7b1 4ed6358 d65669a dcb01bb 4ed6358 fc57cfc 4ed6358 fc57cfc 4ed6358 58b581f 4ed6358 58b581f 4ed6358 58b581f 4ed6358 58b581f 4ed6358 58b581f ee7c71e 4ed6358 8abcf2d 4ed6358 3951475 4ed6358 60517f0 4ed6358 60517f0 4ed6358 60517f0 4ed6358 60517f0 4ed6358 60517f0 4ed6358 60517f0 4ed6358 60517f0 4ed6358 60517f0 4ed6358 60517f0 8abcf2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
import gradio as gr
from transformers import AutoConfig # Required for Hugging Face integration
from calc_params import calc_params # Import calc_params from the new file
import math
# ---- Helper Functions ---- #
def get_hf_model_args(hf_model_name_or_path):
try:
config = AutoConfig.from_pretrained(hf_model_name_or_path, trust_remote_code=True).to_dict()
except Exception as e:
raise gr.Error(f"Error fetching Hugging Face model: {str(e)}")
# Extract relevant values from the config
num_layers = config.get("num_hidden_layers", None)
hidden_size = config.get("hidden_size", None)
num_attention_heads = config.get("num_attention_heads", None)
vocab_size = config.get("vocab_size", None)
sequence_length = config.get("max_position_embeddings", None)
return {
"num_layers": num_layers,
"hidden_size": hidden_size,
"num_attention_heads": num_attention_heads,
"vocab_size": vocab_size,
"sequence_length": sequence_length,
}
# ---- Update Gradio inputs with Hugging Face model config ---- #
def update_from_hf_model(hf_model_name_or_path):
model_params = get_hf_model_args(hf_model_name_or_path)
return (gr.update(value=model_params["num_layers"]),
gr.update(value=model_params["hidden_size"]),
gr.update(value=model_params["num_attention_heads"]),
gr.update(value=model_params["vocab_size"]),
gr.update(value=model_params["sequence_length"]),
"")
# ---- Memory Calculation ---- #
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
model_params = get_hf_model_args(hf_model_name_or_path) if hf_model_name_or_path else None
if model_params:
num_layers = model_params["num_layers"] or num_layers
hidden_size = model_params["hidden_size"] or hidden_size
num_attention_heads = model_params["num_attention_heads"] or num_attention_heads
vocab_size = model_params["vocab_size"] or vocab_size
sequence_length = model_params["sequence_length"] or sequence_length
dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
embed_params = 2 * vocab_size * hidden_size
positional_params = hidden_size * sequence_length
ln_params = 8 * hidden_size * num_layers + (2 * hidden_size)
attention_params = int(2 * (1 + ffn_expansion_factor) * num_layers * hidden_size * hidden_size)
mlp_params = ffn_expansion_factor * num_layers * hidden_size * hidden_size
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params
bytes_per_param = 2 if is_mixed_precision else 4
model_mem = total_params * bytes_per_param
per_gpu_mem_gib = (model_mem / (tensor_parallel_size * pipeline_parallel_size)) / 1024**3 + misc_mem_gib
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
# ---- FLOP Calculation ---- #
def calc_flops(vocab_size, hidden_size, sequence_length, num_layers, kv_size_ratio, topk, moe, num_experts, expert_interval, batch_size, tokens, checkpoint_activations, ffn_expansion_factor, infer):
# An A_(m x k) X B_(k x n) matrix multiplication requires 2m x k x n FLOPs (factor of 2 needed to account for multiplies and adds)
tokens = 1e9 * tokens
# determine the flops factor.
iter_factor = 3
if checkpoint_activations:
iter_factor += 1
if infer:
iter_factor = 1
qkv_flops = int(iter_factor * 2 * (1 + 2 * kv_size_ratio) * num_layers * tokens * hidden_size * hidden_size)
attention_matrix_flops = iter_factor * 2 * num_layers * tokens * sequence_length * hidden_size
attention_over_values_flops = iter_factor * 2 * num_layers * tokens * sequence_length * hidden_size
linear_projection_flops = iter_factor * 2 * num_layers * tokens * hidden_size * hidden_size
ffn_flops = int(iter_factor * 2 * ffn_expansion_factor) * num_layers * tokens * hidden_size * hidden_size
embedding_flops = 6 * tokens * hidden_size * vocab_size
if moe and topk > 1:
ffn_flops += ffn_flops * topk / expert_interval
if moe:
gating_flops = 2 * num_experts * hidden_size / expert_interval
total_flops = qkv_flops + attention_matrix_flops + attention_over_values_flops + linear_projection_flops + ffn_flops + embedding_flops
if moe:
total_flops += gating_flops
def convert_flops(params):
if params == 0:
return "0"
size_name = ("", "KFLOPs", "MFLOPs", "GFLOPs", "TFLOPs", "PFLOPs", "EFLOPs", "ZFLOPs", "YFLOPs")
i = int(math.floor(math.log(params, 1000)))
p = math.pow(1000, i)
s = round(params / p, 2)
return f"{s} {size_name[i]}"
return {
'qkv_flops': convert_flops(qkv_flops),
'attention_matrix_flops': convert_flops(attention_matrix_flops),
'attention_over_values_flops': convert_flops(attention_over_values_flops),
'linear_projection_flops': convert_flops(linear_projection_flops),
'ffn_flops': convert_flops(ffn_flops),
'embedding_flops': convert_flops(embedding_flops),
'total_flops': convert_flops(total_flops)
}
# ---- Gradio Interface ---- #
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Accordion("Credits and General Idea", open=False):
gr.Markdown("""
This app is a re-creation of [this calculator](https://github.com/EleutherAI/cookbook/tree/main/calc) from EleutherAI.
Before training or inference even begins, common practical questions about potential models must be answered such as:
1. How many parameters are we targeting? How should those parameters be allocated within the model?
1. How many FLOPs does the model from step 1 take to train on t tokens? How about inference?
1. How much memory does the model from step 1 take to train/infer on d devices? What memory-saving strategies (e.g. parallelism, quantization, etc) are necessary to fit the model on device memory?
""")
with gr.Tab("Memory Calculation"):
#with gr.TabItem("Memory Calculation"):
with gr.Accordion("About Memory Calculation", open=False):
gr.Markdown("""
## Memory Calculation
Memory Calculation calculates the amount of device memory required to train or infer a model. See [Transformers Math 101](https://blog.eleuther.ai/transformer-math/) for more details on how memory overhead is calculated.
Take this estimation with a grain of salt, because every implementation is different and these calculations were written to match the GPT-NeoX library as close as possible.
Even for other training and inference libraries, however, we expect our script to give approximate memory estimations within acceptable error.
(Please see [LLM finetuning memory requirements](https://blog.scottlogic.com/2023/11/24/llm-mem.html) for a treatment of how specific memory costs may vary framework-to-framework). Other good resources that we consulted are the [ZeRO Paper](https://arxiv.org/abs/1910.02054) and [Reducing Activation Recomputation in Large Transformer Models](https://arxiv.org/pdf/2205.05198.pdf).
""")
with gr.Accordion("How to use it?", open=False):
gr.Markdown("""
## To Use
Fill in the required details below and click 'Calculate Memory' to get a result.
""")
with gr.Row():
with gr.Column("Generatable"):
gr.Markdown("## Generatable")
with gr.Group():
hf_model_name_or_path = gr.Textbox(
label="HuggingFace Model Name or Path",
info="Name of the HuggingFace Hub repository or the local file path for it"
)
sequence_length = gr.Number(
label="Sequence Length",
value=2048,
info="Sequence length used for training"
)
vocab_size = gr.Number(
label="Vocab Size",
value=51200,
info="How many tokens are in the embedding layer"
)
hidden_size = gr.Number(
label="Hidden Size",
value=6144,
info="Dimension of the model's hidden size"
)
num_attention_heads = gr.Number(
label="Number of Attention Heads",
value=64,
info="Number of attention heads used in the model"
)
num_layers = gr.Number(
label="Number of Layers",
value=44,
info="Number of transformer layers used in the model"
)
with gr.Column("User Defined"):
gr.Markdown("## User Defined")
num_gpus = gr.Number(
label="Number of GPUs",
value=1,
info="Number of GPUs used for training"
)
tensor_parallel_size = gr.Number(
label="Tensor Parallel Size",
value=1,
info="Tensor parallel degree (1 if not used)"
)
pipeline_parallel_size = gr.Number(
label="Pipeline Parallel Size",
value=1,
info="Pipeline parallel degree (1 if not used)"
)
batch_size_per_gpu = gr.Number(
label="Batch Size per GPU",
value=8,
info="Batch size per GPU"
)
ffn_expansion_factor = gr.Number(
label="FFN Expansion Factor",
value=4,
info="How much the MLP hidden size expands"
)
is_mixed_precision = gr.Checkbox(
label="Mixed Precision",
value=True,
info="Whether mixed precision is enabled"
)
misc_mem_gib = gr.Number(
label="Miscellaneous Memory Overhead (GiB)",
value=5,
info="Miscellaneous memory overhead per GPU by DL frameworks, communication libraries, etc."
)
calc_memory_button = gr.Button("Calculate Memory")
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
calc_memory_button.click(
calc_mem,
inputs=[
hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib
],
outputs=memory_result
)
hf_model_name_or_path.change(
fn=update_from_hf_model,
inputs=[hf_model_name_or_path],
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result]
)
# Parameter Calculation Tab
with gr.TabItem("Parameter Calculation"):
gr.Markdown("""
## Parameter Calculation
Parameter Calculation calculates the number of parameters present in a given model based on its hyperparams.
Such calculations are important to determine memory overheads, FLOPs, or to determine the size of an unknown transformer model.
We also found the following resources helpful:
[How does GPT-3 spend its 175B parameters?](https://www.lesswrong.com/posts/3duR8CrvcHywrnhLo/how-does-gpt-3-spend-its-175b-parameters)
and [LLM Parameter Counting](https://kipp.ly/transformer-param-count/).
## How To Use
Simply input the model details, such as the hidden size, number of layers, and attention heads, and press 'Calculate Parameters' to get a result.
""")
with gr.Row():
with gr.Column("Generatable"):
with gr.Group():
hf_model_name_or_path = gr.Textbox(
label="HuggingFace Model Name or Path",
info="Name of the HuggingFace Hub repository or the local file path for it"
)
vocab_size = gr.Number(
label="Vocab Size",
value=51200,
info="How many tokens are in the embedding layer"
)
hidden_size = gr.Number(
label="Hidden Size",
value=6144,
info="Dimension of the model's hidden size"
)
sequence_length = gr.Number(
label="Sequence Length",
value=2048,
info="Sequence length used for training"
)
num_layers = gr.Number(
label="Number of Layers",
value=44,
info="Number of transformer layers used in the model"
)
with gr.Column("User Defined"):
tied_embeddings = gr.Checkbox(
label="Tied Embeddings",
value=False,
info="Whether embeddings are tied (shared between input and output)"
)
ffn_expansion_factor = gr.Number(
label="FFN Expansion Factor",
value=4,
info="How much the MLP hidden size expands"
)
num_mlp_linears = gr.Number(
label="Number of Linear Layers per MLP Block",
value=2,
info="How many linear layers per MLP block"
)
kv_size_ratio = gr.Number(
label="KV Size Ratio",
value=1.0,
info="Ratio of total query heads to key/value heads. 1.0 for MHA, 1/num_attention_heads for MQA"
)
with gr.Accordion("MoE Parameters", open=False):
moe = gr.Checkbox(
label="MoE",
value=False,
info="Whether the model is MoE"
)
num_experts = gr.Number(
label="Number of Experts",
value=8,
info="Number of experts for MoE"
)
expert_interval = gr.Number(
label="Expert Interval",
value=1,
info="Expert interval for MoE"
)
topk = gr.Number(
label="Top k Routing",
value=1,
info="Top k routing for MoE"
)
calc_param_button = gr.Button("Calculate Parameters")
param_result = gr.Textbox(label="Parameter Calculation Result", interactive=False)
calc_param_button.click(calc_params,
inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio],
outputs=param_result)
hf_model_name_or_path.change(fn=update_from_hf_model,
inputs=[hf_model_name_or_path],
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length])
# New FLOP Calculation Tab
with gr.TabItem("FLOP Calculation"):
gr.Markdown("""
## FLOP Calculation
FLOP Calculation calculates the number of theoretical FLOPs required to train a model on t tokens.
See [Transformers Math 101](https://blog.eleuther.ai/transformer-math/) for more details on how FLOPs are calculated.
Other good resources that we consulted are the [Chinchilla Paper](https://arxiv.org/abs/2203.15556) and
[Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM](https://people.eecs.berkeley.edu/~matei/papers/2021/sc_megatron_lm.pdf).
""")
with gr.Row():
with gr.Column("Generatable"):
with gr.Group():
hf_model_name_or_path = gr.Textbox(
label="HuggingFace Model Name or Path",
info="Name of the HuggingFace Hub repository or the local file path for it"
)
vocab_size = gr.Number(
label="Vocab Size",
value=51200,
info="How many tokens are in the embedding layer"
)
hidden_size = gr.Number(
label="Hidden Size",
value=6144,
info="Dimension of the model's hidden size"
)
sequence_length = gr.Number(
label="Sequence Length",
value=2048,
info="Sequence length used for training"
)
num_layers = gr.Number(
label="Number of Layers",
value=44,
info="Number of transformer layers used in the model"
)
with gr.Column("Generatable"):
kv_size_ratio = gr.Number(
label="KV Size Ratio",
value=1.0,
info="Ratio of kv heads to query heads used in model. 1.0 for MHA"
)
ffn_expansion_factor = gr.Number(
label="FFN Expansion Factor",
value=4,
info="How much the MLP hidden size expands"
)
batch_size = gr.Number(
label="Batch Size",
value=1,
info="Global batch size in units of samples"
)
tokens = gr.Number(
label="Number of GigaTokens",
value=300,
info="Total number of GigaTokens for training"
)
checkpoint_activations = gr.Checkbox(
label="Checkpoint Activations",
value=True,
info="Whether Megatron-style activation checkpointing is being used"
)
infer = gr.Checkbox(
label="Inference-Only",
value=False,
info="Whether the model is being used for inference-only"
)
# MoE parameters hidden in accordion
with gr.Accordion("Mixture of Experts (MoE)", open=False):
moe = gr.Checkbox(
label="Mixture of Experts (MoE)",
value=False,
info="Whether the model uses Mixture of Experts"
)
num_experts = gr.Number(
label="Number of Experts",
value=128,
info="Number of experts for Mixture of Experts (MoE)"
)
expert_interval = gr.Number(
label="Expert Interval",
value=2,
info="Expert interval for Mixture of Experts (MoE)"
)
topk = gr.Number(
label="Top K Routing for MoE",
value=1,
info="Top k routing for Mixture of Experts (MoE)"
)
calc_flops_button = gr.Button("Calculate FLOPs")
flops_result = gr.JSON(label="FLOP Calculation Result")
calc_flops_button.click(
calc_flops,
inputs=[vocab_size, hidden_size, sequence_length, num_layers, kv_size_ratio, topk, moe, num_experts, expert_interval, batch_size, tokens, checkpoint_activations, ffn_expansion_factor, infer],
outputs=flops_result
)
hf_model_name_or_path.change(fn=update_from_hf_model,
inputs=[hf_model_name_or_path],
outputs=[num_layers, hidden_size, vocab_size, sequence_length])
demo.launch()
|