fine_tuned_model_4 / README.md
srikarvar's picture
Add new SentenceTransformer model.
3fa6459 verified
metadata
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1273
  - loss:OnlineContrastiveLoss
widget:
  - source_sentence: Where can I buy organic vegetables?
    sentences:
      - Primary export product of Saudi Arabia
      - Share info about Amazon
      - Where can I buy organic fruits?
  - source_sentence: How to open a bank account in the UK?
    sentences:
      - Steps to open a bank account in the United Kingdom
      - How many weeks in a month?
      - What is the process for turning in an expense report?
  - source_sentence: What is the population of Tokyo?
    sentences:
      - What is the smallest planet in the solar system?
      - Author of the play 'Hamlet'
      - What is the population of Osaka?
  - source_sentence: How to visit the Great Wall of China?
    sentences:
      - Where can I buy a new laptop?
      - How do I close a bank account?
      - Guide to visiting the Great Wall of China
  - source_sentence: Who is the President of the United States?
    sentences:
      - What is the velocity of sound?
      - Who is the current US President?
      - History of the Byzantine Empire
model-index:
  - name: SentenceTransformer based on intfloat/multilingual-e5-small
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: pair class dev
          type: pair-class-dev
        metrics:
          - type: cosine_accuracy
            value: 0.6206896551724138
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.9036016464233398
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.7192575406032483
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.9036016464233398
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.5827067669172933
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9393939393939394
            name: Cosine Recall
          - type: cosine_ap
            value: 0.6366493234478966
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.6206896551724138
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.9036016464233398
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.7192575406032483
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.9036016464233398
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.5827067669172933
            name: Dot Precision
          - type: dot_recall
            value: 0.9393939393939394
            name: Dot Recall
          - type: dot_ap
            value: 0.6366493234478966
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.6175548589341693
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 6.501791000366211
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.7232142857142857
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 7.142887115478516
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.5724381625441696
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9818181818181818
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.64137074777591
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.6206896551724138
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.43908166885375977
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.7192575406032483
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.43908166885375977
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.5827067669172933
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9393939393939394
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.6366493234478966
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.6206896551724138
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 6.501791000366211
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.7232142857142857
            name: Max F1
          - type: max_f1_threshold
            value: 7.142887115478516
            name: Max F1 Threshold
          - type: max_precision
            value: 0.5827067669172933
            name: Max Precision
          - type: max_recall
            value: 0.9818181818181818
            name: Max Recall
          - type: max_ap
            value: 0.64137074777591
            name: Max Ap
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: pair class test
          type: pair-class-test
        metrics:
          - type: cosine_accuracy
            value: 0.8934169278996865
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7770164012908936
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9034090909090907
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7750071287155151
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.8502673796791443
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9636363636363636
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9467412947017336
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.8934169278996865
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.7770164012908936
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9034090909090907
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.7750071287155151
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.8502673796791443
            name: Dot Precision
          - type: dot_recall
            value: 0.9636363636363636
            name: Dot Recall
          - type: dot_ap
            value: 0.9467412947017336
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.890282131661442
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 9.908584594726562
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9002849002849003
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 10.437429428100586
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.8494623655913979
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9575757575757575
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9451852140210413
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.8934169278996865
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.6678076386451721
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9034090909090907
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.6708062887191772
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.8502673796791443
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9636363636363636
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9467412947017336
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.8934169278996865
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 9.908584594726562
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9034090909090907
            name: Max F1
          - type: max_f1_threshold
            value: 10.437429428100586
            name: Max F1 Threshold
          - type: max_precision
            value: 0.8502673796791443
            name: Max Precision
          - type: max_recall
            value: 0.9636363636363636
            name: Max Recall
          - type: max_ap
            value: 0.9467412947017336
            name: Max Ap

SentenceTransformer based on intfloat/multilingual-e5-small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_4")
# Run inference
sentences = [
    'Who is the President of the United States?',
    'Who is the current US President?',
    'What is the velocity of sound?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.6207
cosine_accuracy_threshold 0.9036
cosine_f1 0.7193
cosine_f1_threshold 0.9036
cosine_precision 0.5827
cosine_recall 0.9394
cosine_ap 0.6366
dot_accuracy 0.6207
dot_accuracy_threshold 0.9036
dot_f1 0.7193
dot_f1_threshold 0.9036
dot_precision 0.5827
dot_recall 0.9394
dot_ap 0.6366
manhattan_accuracy 0.6176
manhattan_accuracy_threshold 6.5018
manhattan_f1 0.7232
manhattan_f1_threshold 7.1429
manhattan_precision 0.5724
manhattan_recall 0.9818
manhattan_ap 0.6414
euclidean_accuracy 0.6207
euclidean_accuracy_threshold 0.4391
euclidean_f1 0.7193
euclidean_f1_threshold 0.4391
euclidean_precision 0.5827
euclidean_recall 0.9394
euclidean_ap 0.6366
max_accuracy 0.6207
max_accuracy_threshold 6.5018
max_f1 0.7232
max_f1_threshold 7.1429
max_precision 0.5827
max_recall 0.9818
max_ap 0.6414

Binary Classification

Metric Value
cosine_accuracy 0.8934
cosine_accuracy_threshold 0.777
cosine_f1 0.9034
cosine_f1_threshold 0.775
cosine_precision 0.8503
cosine_recall 0.9636
cosine_ap 0.9467
dot_accuracy 0.8934
dot_accuracy_threshold 0.777
dot_f1 0.9034
dot_f1_threshold 0.775
dot_precision 0.8503
dot_recall 0.9636
dot_ap 0.9467
manhattan_accuracy 0.8903
manhattan_accuracy_threshold 9.9086
manhattan_f1 0.9003
manhattan_f1_threshold 10.4374
manhattan_precision 0.8495
manhattan_recall 0.9576
manhattan_ap 0.9452
euclidean_accuracy 0.8934
euclidean_accuracy_threshold 0.6678
euclidean_f1 0.9034
euclidean_f1_threshold 0.6708
euclidean_precision 0.8503
euclidean_recall 0.9636
euclidean_ap 0.9467
max_accuracy 0.8934
max_accuracy_threshold 9.9086
max_f1 0.9034
max_f1_threshold 10.4374
max_precision 0.8503
max_recall 0.9636
max_ap 0.9467

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,273 training samples
  • Columns: sentence1, label, and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 label sentence2
    type string int string
    details
    • min: 6 tokens
    • mean: 10.93 tokens
    • max: 28 tokens
    • 0: ~48.90%
    • 1: ~51.10%
    • min: 5 tokens
    • mean: 10.29 tokens
    • max: 22 tokens
  • Samples:
    sentence1 label sentence2
    What are the main ingredients in a traditional pizza Margherita? 1 What ingredients are used in a classic pizza Margherita?
    Release date of the iPhone 14 0 Release date of the iPhone 13
    Who won the first Nobel Prize in Literature? 0 Who won the first Nobel Prize in Peace?
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 319 evaluation samples
  • Columns: sentence1, label, and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 label sentence2
    type string int string
    details
    • min: 6 tokens
    • mean: 11.12 tokens
    • max: 22 tokens
    • 0: ~48.28%
    • 1: ~51.72%
    • min: 4 tokens
    • mean: 10.52 tokens
    • max: 21 tokens
  • Samples:
    sentence1 label sentence2
    How many bones are in the human body? 1 Total bones in an adult human
    What is the price of an iPhone 12? 0 What is the price of an iPhone 11?
    What are the different types of renewable energy? 1 What are the various forms of renewable energy?
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 2
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss pair-class-dev_max_ap pair-class-test_max_ap
0 0 - - 0.6414 -
0.5 10 1.9407 - - -
1.0 20 0.9729 0.6810 - -
1.475 30 0.4822 - - -
1.975 40 0.4062 - - -
2.025 41 - 0.5953 - -
2.45 50 0.2894 - - -
2.95 60 0.1977 - - -
3.0 61 - 0.5318 - -
3.425 70 0.1999 - - -
3.925 80 0.1491 0.5159 - 0.9467
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}