SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_7")
# Run inference
sentences = [
'Top literature about World War II',
'Best books on World War II',
'What is the price of an iPhone 12?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9 |
cosine_accuracy_threshold | 0.7847 |
cosine_f1 | 0.9266 |
cosine_f1_threshold | 0.7847 |
cosine_precision | 0.8938 |
cosine_recall | 0.9619 |
cosine_ap | 0.9549 |
dot_accuracy | 0.9 |
dot_accuracy_threshold | 0.7847 |
dot_f1 | 0.9266 |
dot_f1_threshold | 0.7847 |
dot_precision | 0.8938 |
dot_recall | 0.9619 |
dot_ap | 0.9549 |
manhattan_accuracy | 0.8969 |
manhattan_accuracy_threshold | 9.909 |
manhattan_f1 | 0.9241 |
manhattan_f1_threshold | 10.1367 |
manhattan_precision | 0.8933 |
manhattan_recall | 0.9571 |
manhattan_ap | 0.955 |
euclidean_accuracy | 0.9 |
euclidean_accuracy_threshold | 0.6562 |
euclidean_f1 | 0.9266 |
euclidean_f1_threshold | 0.6562 |
euclidean_precision | 0.8938 |
euclidean_recall | 0.9619 |
euclidean_ap | 0.9549 |
max_accuracy | 0.9 |
max_accuracy_threshold | 9.909 |
max_f1 | 0.9266 |
max_f1_threshold | 10.1367 |
max_precision | 0.8938 |
max_recall | 0.9619 |
max_ap | 0.955 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9062 |
cosine_accuracy_threshold | 0.8142 |
cosine_f1 | 0.9292 |
cosine_f1_threshold | 0.8142 |
cosine_precision | 0.9206 |
cosine_recall | 0.9381 |
cosine_ap | 0.9556 |
dot_accuracy | 0.9062 |
dot_accuracy_threshold | 0.8142 |
dot_f1 | 0.9292 |
dot_f1_threshold | 0.8142 |
dot_precision | 0.9206 |
dot_recall | 0.9381 |
dot_ap | 0.9556 |
manhattan_accuracy | 0.9031 |
manhattan_accuracy_threshold | 9.5768 |
manhattan_f1 | 0.9271 |
manhattan_f1_threshold | 9.5768 |
manhattan_precision | 0.9163 |
manhattan_recall | 0.9381 |
manhattan_ap | 0.9558 |
euclidean_accuracy | 0.9062 |
euclidean_accuracy_threshold | 0.6095 |
euclidean_f1 | 0.9292 |
euclidean_f1_threshold | 0.6095 |
euclidean_precision | 0.9206 |
euclidean_recall | 0.9381 |
euclidean_ap | 0.9556 |
max_accuracy | 0.9062 |
max_accuracy_threshold | 9.5768 |
max_f1 | 0.9292 |
max_f1_threshold | 9.5768 |
max_precision | 0.9206 |
max_recall | 0.9381 |
max_ap | 0.9558 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,871 training samples
- Columns:
sentence2
,sentence1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 5 tokens
- mean: 20.57 tokens
- max: 177 tokens
- min: 6 tokens
- mean: 20.74 tokens
- max: 176 tokens
- 0: ~34.00%
- 1: ~66.00%
- Samples:
sentence2 sentence1 label How do I do to get fuller face?
How can one get a fuller face?
1
The DatasetInfo holds the data of a dataset, which may include its description, characteristics, and size.
A dataset's information is stored inside DatasetInfo and can include information such as the dataset description, features, and dataset size.
1
How do I write a resume?
How do I create a resume?
1
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 320 evaluation samples
- Columns:
sentence2
,sentence1
, andlabel
- Approximate statistics based on the first 320 samples:
sentence2 sentence1 label type string string int details - min: 4 tokens
- mean: 19.57 tokens
- max: 135 tokens
- min: 6 tokens
- mean: 19.55 tokens
- max: 136 tokens
- 0: ~34.38%
- 1: ~65.62%
- Samples:
sentence2 sentence1 label Steps to erase internet history
How do I delete my browsing history?
1
How important is it to be the first person to wish someone a happy birthday?
What is the right etiquette for wishing a Jehovah Witness happy birthday?
0
Who directed 'Gone with the Wind'?
Who directed 'Citizen Kane'?
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2num_train_epochs
: 4warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.8735 | - |
0.2222 | 10 | 1.3298 | - | - | - |
0.4444 | 20 | 0.8218 | - | - | - |
0.6667 | 30 | 0.642 | - | - | - |
0.8889 | 40 | 0.571 | - | - | - |
1.0 | 45 | - | 0.5321 | 0.9499 | - |
1.1111 | 50 | 0.4828 | - | - | - |
1.3333 | 60 | 0.3003 | - | - | - |
1.5556 | 70 | 0.3331 | - | - | - |
1.7778 | 80 | 0.203 | - | - | - |
2.0 | 90 | 0.3539 | 0.5118 | 0.9558 | - |
2.2222 | 100 | 0.1357 | - | - | - |
2.4444 | 110 | 0.1562 | - | - | - |
2.6667 | 120 | 0.0703 | - | - | - |
2.8889 | 130 | 0.0806 | - | - | - |
3.0 | 135 | - | 0.5266 | 0.9548 | - |
3.1111 | 140 | 0.1721 | - | - | - |
3.3333 | 150 | 0.1063 | - | - | - |
3.5556 | 160 | 0.0909 | - | - | - |
3.7778 | 170 | 0.0358 | - | - | - |
4.0 | 180 | 0.1021 | 0.5256 | 0.9550 | 0.9558 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for srikarvar/fine_tuned_model_7
Base model
intfloat/multilingual-e5-smallEvaluation results
- Cosine Accuracy on pair class devself-reported0.900
- Cosine Accuracy Threshold on pair class devself-reported0.785
- Cosine F1 on pair class devself-reported0.927
- Cosine F1 Threshold on pair class devself-reported0.785
- Cosine Precision on pair class devself-reported0.894
- Cosine Recall on pair class devself-reported0.962
- Cosine Ap on pair class devself-reported0.955
- Dot Accuracy on pair class devself-reported0.900
- Dot Accuracy Threshold on pair class devself-reported0.785
- Dot F1 on pair class devself-reported0.927