metadata
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2871
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Stages of photosynthesis
sentences:
- The function helps preprocess your entire dataset at once.
- >-
You can create an index for your dataset by using
[Dataset.add_faiss_index()](/docs/datasets/v2.10.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index)
or
[Dataset.add_elasticsearch_index()](/docs/datasets/v2.10.0/en/package_reference/main_classes#datasets.Dataset.add_elasticsearch_index)
depending on the system you want to use.
- What is photosynthesis?
- source_sentence: Steps to erase internet history
sentences:
- How do I delete my browsing history?
- >-
Yes, there is a reference section available in π€ Datasets
documentation. It covers main classes, builder classes, loading methods,
table classes, logging methods, and task templates.
- What is the tallest building in New York City?
- source_sentence: >-
The `StreamingDownloadManager` class is a download manager that employs
the "::" separator to traverse (possibly remote) compressed files.
sentences:
- What is the role of a business plan in entrepreneurship?
- >-
The Hugging Face datasets library's default handler can be disabled to
prevent double logging by calling the
`datasets.utils.logging.enable_propagation()` function.
- >-
The `StreamingDownloadManager` class is a download manager that uses the
β::β separator to navigate through (possibly remote) compressed
archives.
- source_sentence: >-
Using torch.utils.data.DataLoader, you can package the dataset and craft a
collate function to group the samples into batches.
sentences:
- Why does understanding death philosophical?
- >-
The `_generate_examples` method is used to access and yield TAR files
sequentially, and to associate the metadata in `metadata_path` with the
audio files in the TAR file.
- >-
You can wrap the dataset in DataLoader using torch.utils.data.DataLoader
and create a collate function to collate the samples into batches.
- source_sentence: Top literature about World War II
sentences:
- What is the price of an iPhone 12?
- Best books on World War II
- When was the Declaration of Independence signed?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.784720778465271
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.926605504587156
name: Cosine F1
- type: cosine_f1_threshold
value: 0.784720778465271
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8938053097345132
name: Cosine Precision
- type: cosine_recall
value: 0.9619047619047619
name: Cosine Recall
- type: cosine_ap
value: 0.9548853455786228
name: Cosine Ap
- type: dot_accuracy
value: 0.9
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.784720778465271
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.926605504587156
name: Dot F1
- type: dot_f1_threshold
value: 0.784720778465271
name: Dot F1 Threshold
- type: dot_precision
value: 0.8938053097345132
name: Dot Precision
- type: dot_recall
value: 0.9619047619047619
name: Dot Recall
- type: dot_ap
value: 0.9548853455786228
name: Dot Ap
- type: manhattan_accuracy
value: 0.896875
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.908977508544922
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9241379310344828
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.13671588897705
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8933333333333333
name: Manhattan Precision
- type: manhattan_recall
value: 0.9571428571428572
name: Manhattan Recall
- type: manhattan_ap
value: 0.9549673053310541
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6561694145202637
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.926605504587156
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6561694145202637
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8938053097345132
name: Euclidean Precision
- type: euclidean_recall
value: 0.9619047619047619
name: Euclidean Recall
- type: euclidean_ap
value: 0.9548853455786228
name: Euclidean Ap
- type: max_accuracy
value: 0.9
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.908977508544922
name: Max Accuracy Threshold
- type: max_f1
value: 0.926605504587156
name: Max F1
- type: max_f1_threshold
value: 10.13671588897705
name: Max F1 Threshold
- type: max_precision
value: 0.8938053097345132
name: Max Precision
- type: max_recall
value: 0.9619047619047619
name: Max Recall
- type: max_ap
value: 0.9549673053310541
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.90625
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8142284154891968
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.929245283018868
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8142284154891968
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9205607476635514
name: Cosine Precision
- type: cosine_recall
value: 0.9380952380952381
name: Cosine Recall
- type: cosine_ap
value: 0.9556341092519267
name: Cosine Ap
- type: dot_accuracy
value: 0.90625
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8142284750938416
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.929245283018868
name: Dot F1
- type: dot_f1_threshold
value: 0.8142284750938416
name: Dot F1 Threshold
- type: dot_precision
value: 0.9205607476635514
name: Dot Precision
- type: dot_recall
value: 0.9380952380952381
name: Dot Recall
- type: dot_ap
value: 0.9556341092519267
name: Dot Ap
- type: manhattan_accuracy
value: 0.903125
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.576812744140625
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9270588235294117
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.576812744140625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9162790697674419
name: Manhattan Precision
- type: manhattan_recall
value: 0.9380952380952381
name: Manhattan Recall
- type: manhattan_ap
value: 0.9557652464010216
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.90625
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.609528124332428
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.929245283018868
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.609528124332428
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9205607476635514
name: Euclidean Precision
- type: euclidean_recall
value: 0.9380952380952381
name: Euclidean Recall
- type: euclidean_ap
value: 0.9556341092519267
name: Euclidean Ap
- type: max_accuracy
value: 0.90625
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.576812744140625
name: Max Accuracy Threshold
- type: max_f1
value: 0.929245283018868
name: Max F1
- type: max_f1_threshold
value: 9.576812744140625
name: Max F1 Threshold
- type: max_precision
value: 0.9205607476635514
name: Max Precision
- type: max_recall
value: 0.9380952380952381
name: Max Recall
- type: max_ap
value: 0.9557652464010216
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_7")
# Run inference
sentences = [
'Top literature about World War II',
'Best books on World War II',
'What is the price of an iPhone 12?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9 |
cosine_accuracy_threshold | 0.7847 |
cosine_f1 | 0.9266 |
cosine_f1_threshold | 0.7847 |
cosine_precision | 0.8938 |
cosine_recall | 0.9619 |
cosine_ap | 0.9549 |
dot_accuracy | 0.9 |
dot_accuracy_threshold | 0.7847 |
dot_f1 | 0.9266 |
dot_f1_threshold | 0.7847 |
dot_precision | 0.8938 |
dot_recall | 0.9619 |
dot_ap | 0.9549 |
manhattan_accuracy | 0.8969 |
manhattan_accuracy_threshold | 9.909 |
manhattan_f1 | 0.9241 |
manhattan_f1_threshold | 10.1367 |
manhattan_precision | 0.8933 |
manhattan_recall | 0.9571 |
manhattan_ap | 0.955 |
euclidean_accuracy | 0.9 |
euclidean_accuracy_threshold | 0.6562 |
euclidean_f1 | 0.9266 |
euclidean_f1_threshold | 0.6562 |
euclidean_precision | 0.8938 |
euclidean_recall | 0.9619 |
euclidean_ap | 0.9549 |
max_accuracy | 0.9 |
max_accuracy_threshold | 9.909 |
max_f1 | 0.9266 |
max_f1_threshold | 10.1367 |
max_precision | 0.8938 |
max_recall | 0.9619 |
max_ap | 0.955 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9062 |
cosine_accuracy_threshold | 0.8142 |
cosine_f1 | 0.9292 |
cosine_f1_threshold | 0.8142 |
cosine_precision | 0.9206 |
cosine_recall | 0.9381 |
cosine_ap | 0.9556 |
dot_accuracy | 0.9062 |
dot_accuracy_threshold | 0.8142 |
dot_f1 | 0.9292 |
dot_f1_threshold | 0.8142 |
dot_precision | 0.9206 |
dot_recall | 0.9381 |
dot_ap | 0.9556 |
manhattan_accuracy | 0.9031 |
manhattan_accuracy_threshold | 9.5768 |
manhattan_f1 | 0.9271 |
manhattan_f1_threshold | 9.5768 |
manhattan_precision | 0.9163 |
manhattan_recall | 0.9381 |
manhattan_ap | 0.9558 |
euclidean_accuracy | 0.9062 |
euclidean_accuracy_threshold | 0.6095 |
euclidean_f1 | 0.9292 |
euclidean_f1_threshold | 0.6095 |
euclidean_precision | 0.9206 |
euclidean_recall | 0.9381 |
euclidean_ap | 0.9556 |
max_accuracy | 0.9062 |
max_accuracy_threshold | 9.5768 |
max_f1 | 0.9292 |
max_f1_threshold | 9.5768 |
max_precision | 0.9206 |
max_recall | 0.9381 |
max_ap | 0.9558 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,871 training samples
- Columns:
sentence2
,sentence1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 5 tokens
- mean: 20.57 tokens
- max: 177 tokens
- min: 6 tokens
- mean: 20.74 tokens
- max: 176 tokens
- 0: ~34.00%
- 1: ~66.00%
- Samples:
sentence2 sentence1 label How do I do to get fuller face?
How can one get a fuller face?
1
The DatasetInfo holds the data of a dataset, which may include its description, characteristics, and size.
A dataset's information is stored inside DatasetInfo and can include information such as the dataset description, features, and dataset size.
1
How do I write a resume?
How do I create a resume?
1
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 320 evaluation samples
- Columns:
sentence2
,sentence1
, andlabel
- Approximate statistics based on the first 320 samples:
sentence2 sentence1 label type string string int details - min: 4 tokens
- mean: 19.57 tokens
- max: 135 tokens
- min: 6 tokens
- mean: 19.55 tokens
- max: 136 tokens
- 0: ~34.38%
- 1: ~65.62%
- Samples:
sentence2 sentence1 label Steps to erase internet history
How do I delete my browsing history?
1
How important is it to be the first person to wish someone a happy birthday?
What is the right etiquette for wishing a Jehovah Witness happy birthday?
0
Who directed 'Gone with the Wind'?
Who directed 'Citizen Kane'?
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2num_train_epochs
: 4warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.8735 | - |
0.2222 | 10 | 1.3298 | - | - | - |
0.4444 | 20 | 0.8218 | - | - | - |
0.6667 | 30 | 0.642 | - | - | - |
0.8889 | 40 | 0.571 | - | - | - |
1.0 | 45 | - | 0.5321 | 0.9499 | - |
1.1111 | 50 | 0.4828 | - | - | - |
1.3333 | 60 | 0.3003 | - | - | - |
1.5556 | 70 | 0.3331 | - | - | - |
1.7778 | 80 | 0.203 | - | - | - |
2.0 | 90 | 0.3539 | 0.5118 | 0.9558 | - |
2.2222 | 100 | 0.1357 | - | - | - |
2.4444 | 110 | 0.1562 | - | - | - |
2.6667 | 120 | 0.0703 | - | - | - |
2.8889 | 130 | 0.0806 | - | - | - |
3.0 | 135 | - | 0.5266 | 0.9548 | - |
3.1111 | 140 | 0.1721 | - | - | - |
3.3333 | 150 | 0.1063 | - | - | - |
3.5556 | 160 | 0.0909 | - | - | - |
3.7778 | 170 | 0.0358 | - | - | - |
4.0 | 180 | 0.1021 | 0.5256 | 0.9550 | 0.9558 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}