metadata
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:546
- loss:TripletLoss
widget:
- source_sentence: How to cook a turkey?
sentences:
- How to make a turkey sandwich?
- World's biggest desert by area
- Steps to roast a turkey
- source_sentence: What is the best way to learn a new language?
sentences:
- Author of the play 'Hamlet'
- What is the fastest way to travel?
- How can I effectively learn a new language?
- source_sentence: Who wrote 'To Kill a Mockingbird'?
sentences:
- Who wrote 'The Great Gatsby'?
- How can I effectively save money?
- Author of 'To Kill a Mockingbird'
- source_sentence: Who was the first person to climb Mount Everest?
sentences:
- Steps to visit the Great Wall of China
- Who was the first person to climb K2?
- First climber to reach the summit of Everest
- source_sentence: What is the capital city of Canada?
sentences:
- First circumnavigator of the globe
- What is the capital of Canada?
- What is the capital city of Australia?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: triplet
name: Triplet
dataset:
name: triplet validation
type: triplet-validation
metrics:
- type: cosine_accuracy
value: 0.9836065573770492
name: Cosine Accuracy
- type: dot_accuracy
value: 0.01639344262295082
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9836065573770492
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9836065573770492
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9836065573770492
name: Max Accuracy
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-triplet-final")
# Run inference
sentences = [
'What is the capital city of Canada?',
'What is the capital of Canada?',
'What is the capital city of Australia?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
triplet-validation
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9836 |
dot_accuracy | 0.0164 |
manhattan_accuracy | 0.9836 |
euclidean_accuracy | 0.9836 |
max_accuracy | 0.9836 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 546 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 10.78 tokens
- max: 22 tokens
- min: 4 tokens
- mean: 9.52 tokens
- max: 19 tokens
- min: 6 tokens
- mean: 10.75 tokens
- max: 22 tokens
- Samples:
anchor positive negative What is the capital of Brazil?
Capital city of Brazil
What is the capital of Argentina?
How do I install Python on my computer?
How do I set up Python on my PC?
How do I uninstall Python on my computer?
How do I apply for a credit card?
How do I get a credit card?
How do I cancel a credit card?
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 61 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.66 tokens
- max: 16 tokens
- min: 5 tokens
- mean: 9.43 tokens
- max: 14 tokens
- min: 6 tokens
- mean: 10.54 tokens
- max: 17 tokens
- Samples:
anchor positive negative How to create a podcast?
Steps to start a podcast
How to create a vlog?
How many states are there in the USA?
Total number of states in the United States
How many provinces are there in Canada?
What is the population of India?
How many people live in India?
What is the population of China?
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 2learning_rate
: 5e-06weight_decay
: 0.01num_train_epochs
: 12lr_scheduler_type
: cosinewarmup_steps
: 50load_best_model_at_end
: Trueoptim
: adamw_torch_fused
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 12max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 50log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | triplet-validation_max_accuracy |
---|---|---|---|---|
0.5714 | 10 | 4.9735 | - | - |
0.9714 | 17 | - | 4.9198 | - |
1.1429 | 20 | 4.9596 | - | - |
1.7143 | 30 | 4.9357 | - | - |
2.0 | 35 | - | 4.8494 | - |
2.2857 | 40 | 4.896 | - | - |
2.8571 | 50 | 4.8587 | - | - |
2.9714 | 52 | - | 4.7479 | - |
3.4286 | 60 | 4.8265 | - | - |
4.0 | 70 | 4.7706 | 4.6374 | - |
4.5714 | 80 | 4.7284 | - | - |
4.9714 | 87 | - | 4.5422 | - |
5.1429 | 90 | 4.6767 | - | - |
5.7143 | 100 | 4.653 | - | - |
6.0 | 105 | - | 4.4474 | - |
6.2857 | 110 | 4.6234 | - | - |
6.8571 | 120 | 4.5741 | - | - |
6.9714 | 122 | - | 4.3708 | - |
7.4286 | 130 | 4.5475 | - | - |
8.0 | 140 | 4.5206 | 4.3162 | - |
8.5714 | 150 | 4.517 | - | - |
8.9714 | 157 | - | 4.2891 | - |
9.1429 | 160 | 4.4587 | - | - |
9.7143 | 170 | 4.4879 | - | - |
10.0 | 175 | - | 4.2755 | - |
10.2857 | 180 | 4.4625 | - | - |
10.8571 | 190 | 4.489 | - | - |
10.9714 | 192 | - | 4.2716 | - |
11.4286 | 200 | 4.4693 | - | - |
11.6571 | 204 | - | 4.2713 | 0.9836 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}