metadata
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
widget:
- text: >-
New Zealand Prime Minister Jim Bolger, emerging from coalition talks with
the nationalist New Zealand First party on Friday afternoon, said National
and NZ First would meet again on Sunday.
- text: >-
A police spokesman said two youths believed to be supporters of President
Nelson Mandela's African National Congress (ANC) had been killed when
unknown gunmen opened fire at the rural settlement of Izingolweni on
KwaZulu-Natal province's south coast on Thursday night.
- text: >-
Japan's Economic Planning Agency has not changed its view that the economy
is gradually recovering, despite relatively weak gross domestic product
figures released on Tuesday, EPA Vice Minister Shimpei Nukaya told
reporters on Friday.
- text: >-
Cuttitta, who trainer George Coste said was certain to play on Saturday
week, was named in a 21-man squad lacking only two of the team beaten
54-21 by England at Twickenham last month.
- text: Dong Jiong (China) beat Thomas Stuer-Lauridsen (Denmark) 15-10 15-6
pipeline_tag: token-classification
model-index:
- name: SpanMarker
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Unknown
type: conll2003
split: test
metrics:
- type: f1
value: 0.9209646189051223
name: F1
- type: precision
value: 0.9156457822891144
name: Precision
- type: recall
value: 0.9263456090651558
name: Recall
SpanMarker
This is a SpanMarker model trained on the conll2003 dataset that can be used for Named Entity Recognition.
Model Details
Model Description
- Model Type: SpanMarker
- Maximum Sequence Length: 256 tokens
- Maximum Entity Length: 8 words
- Training Dataset: conll2003
Model Sources
- Repository: SpanMarker on GitHub
- Thesis: SpanMarker For Named Entity Recognition
Model Labels
Label | Examples |
---|---|
LOC | "BRUSSELS", "Britain", "Germany" |
MISC | "British", "EU-wide", "German" |
ORG | "European Union", "EU", "European Commission" |
PER | "Nikolaus van der Pas", "Peter Blackburn", "Werner Zwingmann" |
Evaluation
Metrics
Label | Precision | Recall | F1 |
---|---|---|---|
all | 0.9156 | 0.9263 | 0.9210 |
LOC | 0.9327 | 0.9394 | 0.9361 |
MISC | 0.7973 | 0.8462 | 0.8210 |
ORG | 0.8987 | 0.9133 | 0.9059 |
PER | 0.9706 | 0.9610 | 0.9658 |
Uses
Direct Use for Inference
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_conll03_xl")
# Run inference
entities = model.predict("Dong Jiong (China) beat Thomas Stuer-Lauridsen (Denmark) 15-10 15-6")
Downstream Use
You can finetune this model on your own dataset.
Click to expand
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_conll03_xl")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("supreethrao/instructNER_conll03_xl-finetuned")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 1 | 14.5019 | 113 |
Entities per sentence | 0 | 1.6736 | 20 |
Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Framework Versions
- Python: 3.10.13
- SpanMarker: 1.5.0
- Transformers: 4.35.2
- PyTorch: 2.1.1
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}